
Automatic Generation of
Fault-Tolerant CORBA-Services

Andreas Polze, Janek Schwarz and Miroslaw Malek
Department of Computer Science

Humboldt-University of Berlin
apolze@informatik.hu-berlin.de

Presentation at TOOLS USA 2000

Overview

• Motivation:
– Fault-tolerant computing on off-the-shelf components

– Standard middleware: CORBA

• Description of non-functional component properties
– Fault-models and protocols

– Aspect-oriented programming

• Case studies:
– Automatic generation of fault-tolerant services

– XML-based aspect description for component replication

• Conclusions

RESPONSIVE COMPUTER SYSTEMS

are dependable real-time systems, that
deliver satisfactory service in a timely
manner under given fault and load
hypotheses.

DEPENDABILTY RC REAL TIME

Responsive Computing

Fault model at the component level
• Every possible fault. This class includes

the authenticated Byzantine fault.

• PE behaves in an arbitrary or malicious
manner, but is unable to imperceptibly
change an authenticated message.

• PE fails to produce a correct output in
response to a correct input.

• PE completes an assignment before or
after its specified time frame or never.

• PE fails to meet a deadline or to begin a
task.

• Processing element (PE) loses its
internal state or halts. The processor is
silent during the fault

Choosing the appropriate protocols

• A variety of protocols handle different fault classes.
– Establish a consistent view onto system state (Consensus)

– Among (non-faulty) processors

• Framework deals with:
– crash faults (of components of processors)

– incorrect computation faults

• The system maps timing and omission faults onto
crash faults and stops a faulty CORBA component.
– (due to limitations inherent in CORBA communication (IIOP))

• No detection mechanisms for Byzantine faults.

Problem: Description of a component‘s
fault-assumptions/models

Description of non-functional Properties:
Aspect-Oriented Programming

AspectJ: http://www.parc.xerox.com/spl/projects/aop/
Voyager ORB: http://www.objectspace.com

• Objects have been a great success (data-abstraction,
encapsulation)

– Functional-decomposition

• Objects don't seem to help as much for:
synchronization, multi-object protocols, replication,
resource sharing, distribution, memory management,

• Rather than staying well localized within a class, these concerns
tend to cross-cut the system's class and module structure.

• Much of the complexity in existing systems appears to stem
from the way in which the implementation of these kinds of
concerns ends up being intertwined throughout the code.

Aspects / Facets

• Aspects are a new unit of software modularity, that appears to
provide a better handle on managing cross-cutting concerns.

• aspects are intended to be used in both design and
implementation.

• During design the concept of aspect facilitates thinking about cross-
cutting concerns as well-defined entities.

• During implementation, aspect-oriented programming languages
make it possible to program directly in terms of design aspects.

• Promising way to describe non-functional component properties:

– fault-tolerance measures, resource constraints

– timing behavior, security, mobility

Case study: Automatic Generation of fault-
tolerant CORBA Services

• Programmer implements sequential service and gives design time
information about possible fault-tolerance measures

• Service configurator starts multiple copies of server objects based
on chosen fault-model and available network nodes (replication in
space vs. time)

• Client may request some fault tolerance level with each request and
depending on actual service configuration the request is either
fulfilled or an exception returned

• GUI for service configuration; NT-based implementation

Component Model for a
Fault-tolerant Service

• Design-time (programming) vs. Runtime (crash) faults

• Analytic redundancy + consensus protocols

• Hot/warm/cold replication:
– Group comm., checkpointing to memory/disk

Interface object

Management

Distributor

Evaluator

core service
(primary)

core service
(backup)

core service
(backup)

communication
state

synchronisation

CORBA
client

Interface object

Management

Distributor

Evaluator

CORBA
client

core service
(primary)

evaluator
(primary)

core service
(backup

evaluator
(backup)

Design time

- service description
- sequential service implementation
- state, synchronization

Configuration time

- description of FT requirements
- environment description
- distribution/replication of components

Runtime

- clients’ requests with QoS (FT)
- request is accepted or exception returned
- reflection (implemented by reflector)

description/
FT aspect

client

IDL
interface

reflector

Aspect weaver

Description of a Service

service <Name>Name of service for registration with implementation repositoryinterface_type_idType ID of the service’s IDL – interfacestate_synchroEnumeration of synchronisation schemes (hot, warm, coldoder none) supported by the service.Execept for scheme none, the interfaceStateSynchronisationManagement has to be supportedstatelessFlag, which describes whether service is stateless or notimpl_independentFlag, which describes whether simultaneous execution of multiplecopies of the service is acceptable or notspecific_evaluatorName of a service-specific evaluator (I.e.; decision unit)redundant_servicesEnumeration of functionally redundant service implementations.

NT-based GUI – Description of a
FT Fractal Service

Description of Fault Tolerance Requirements

ft_service FT_FractalTest {

base_service = Fractal

fault_class = computation

//(crash|computation)

number_of_faults = 1

phase_of_creation = implementation

//(implementation|runtime)

optimize_criteria = resource_usage, response_time,

 fault_recovery_overhead

}

Requirements for the
FT Fractal service

Configuration of FT Service

• Generated based on information about environment, FT
requirements and service description

FT_FractalTest {

style = sequential

state_synchronisation = none

basic_services = [Fractal,zeus], [Fractal_2,queen]

evaluators = [Fractal_eval,zeus], [Fractal_eval,queen]

}

• Example shows primary/backup replication without state
synchronization based on functional redundancy (multiversion)

• The service may tolerate a single computation fault

Instantiation of the FT Fractal service

Component Replication as an Aspect
Open questions:

• How can aspects be identified?
– General: Synchronization,

Communication, Fault-tolerance

– Domain-specific: Business, Medical,...

• How can aspects be described?
– Language extensions, libraries

– Separate aspect description
language(s?)

• How to combine aspects and
program logic?
– Library, generator (aspect weaver)

meta level

Composition

library

inheritance

Description

aspect
lang.

prog.
lang.

Information

dynamic

static

Document Type Description for
Replication

<?xml encoding=“US-ASCII“?>
<!ELEMENT Replication(Class,Methods,Strategy,Configuration)>

<!ELEMENT Class(#PCDATA)>
<!ELEMENT Methods(MethodName)+>

<!ELEMENT MethodName(#PCDATA)>
<!ATTLIST MethodName type (read|write) #REQUIRED>

 <!ELEMENT Strategy(Active?,Passive?)+>
<!ELEMENT Active EMPTY>
<!ATTLIST Active ActiveState(StateMachine|LeaderFollower) #REQUIRED>
<!ELEMENT Passive EMPTY>
<!ATTLIST Passive PassiveState(hot|warm|cold) #REQUIRED>

<!ELEMENT Configuration(DefaultStrategy,MaxNumOfReplica,MinNumOfReplica,
NameOfReplica?,HostRequired?,OneReplicaPerHost?)>

<!ELEMENT DefaultStrategy EMPTY>
<!ATTLIST DefaultStrategy type(ActiveMachine|ActiveLeader|

PassiveHot|PassiveWarm|PassiveCold) #REQUIRED>
<!ELEMENT MaxNumOfReplica(#PCDATA)>
<!ELEMENT MinNumOfReplica(#PCDATA)> ...

Aspect Description for a particular
Java-class

<?xml version=“1.0“?>
<!DOCTYPE Replication SYSTEM “replication.dtd“>
<Replication>

<Class>Date.java</Class>
<Methods>

<MethodName type=“read“> getDate </MethodName>
<MethodName type=“write“> setDate </MethodName> </Methods>

<Strategy>
<Active ActiveState=“StateMachine“></Active> </Strategy>

<Configuration>
<DefaultStrategy type=“ActiveMachine“></DefaultStrategy>
<MaxNumOfReplica> 4 </MaxNumOfReplica>
<MinNumOfReplica> 2 </MinNumOfReplica>
<NameOfReplica> DateTest </NameOfReplica>
<HostRequired> trave.informatik.hu-berlin.de </HostRequired>
<OneReplicaPerHost value=“true“></OneReplicaPerHost> </Configuration>

</Replication>

Description of Component Replication
using XML

Based on
IBM Alphaworks
toolkit

Work in Progress

• Definition of a general aspect language for description of non-
functional component properties
– XML-based

• Focus on additional criteria for service configuration: resource
usage, security, timing behavior, co-locations
– Generation of Secure DCOM Services

• Design patterns
– Software Engineering approach to System Composition based on

Non-functional properties

Conclusions

• Availability will become one of the most
sought after qualities for distributed services

• Off-the-shelf components and standard
middleware are the only feasible approach

• Steps towards engineering of software for
availability have been presented

