Presentation at TOOLS USA 2000

Automatic Generation of
Fault-Tolerant CORBA-Services

Andreas Polze, Janek Schwarz and Miroslaw Malek
Department of Computer Science
Humboldt-University of Berlin
apolze@informatik.hu-berlin.de

Overview

Motivation:

— Fault-tolerant computing on off-the-shelf components
— Standard middleware: CORBA

Description of non-functional component properties
— Fault-models and protocols
— Aspect-oriented programming

Case studies:
— Automatic generation of fault-tolerant services
— XML-based aspect description for component replication

Conclusions

Responsive Computing

DEPENDABILTY

RESPONSIVE COMPUTER SYSTEMS

are dependable real-time systems, that
deliver satisfactory service in a timely
manner under given fault and load
hypotheses.

Fault model at the component level

Byzantine

Authenticated Byzantine <«

Incorrect Computation

Fail Stop,

Every possible fault. This class includes
the authenticated Byzantine fault.

PE behaves in an arbitrary or malicious
manner, but is unable to imperceptibly
change an authenticated message.

PE fails to produce a correct output in
response to a correct input.

PE completes an assignment before or
after its specified time frame or never.

PE fails to meet a deadline or to begin a
task.

Processing element (PE) loses its
internal state or halts. The processor is
silent during the fault

Choosing the appropriate protocols

A variety of protocols handle different fault classes.
— Establish a consistent view onto system state (Consensus)
— Among (non-faulty) processors

Framework deals with:

— crash faults (of components of processors)
— incorrect computation faults

The system maps timing and omission faults onto
crash faults and stops a faulty CORBA component.
— (due to limitations inherent in CORBA communication (IIOP))

No detection mechanisms for Byzantine faults.

Problem: Description of a component's
fault-assumptions/models

Description of non-functional Properties:
Aspect-Oriented Programming

Aspectd: http://www.parc.xerox.com/spl/projects/aop/
Voyager ORB: http://www.objectspace.com

« Objects have been a great success (data-abstraction,
encapsulation)

— Functional-decomposition

« Objects don't seem to help as much for:
synchronization, multi-object protocols, replication,
resource sharing, distribution, memory management,

« Rather than staying well localized within a class, these concerns
tend to cross-cut the system's class and module structure.

* Much of the complexity in existing systems appears to stem
from the way in which the implementation of these kinds of
concerns ends up being intertwined throughout the code.

Aspects / Facets

Aspects are a new unit of software modularity, that appears to
provide a better handle on managing cross-cutting concerns.

aspects are intended to be used in both design and
implementation.

During design the concept of aspect facilitates thinking about cross-
cutting concerns as well-defined entities.

During implementation, aspect-oriented programming languages
make it possible to program directly in terms of design aspects.

Promising way to describe non-functional component properties:
— fault-tolerance measures, resource constraints

— timing behavior, security, mobility

Case study: Automatic Generation of fault-
tolerant CORBA Services

Programmer implements sequential service and gives design time
information about possible fault-tolerance measures

Service configurator starts multiple copies of server objects based
on chosen fault-model and available network nodes (replication in
space vs. time)

Client may request some fault tolerance level with each request and
depending on actual service configuration the request is either
fulfilled or an exception returned

GUI for service configuration; NT-based implementation

Component Model for a

Fault-tolerant Service

4 Interface object Interface object
: core service
{ Management J Cc(),;?i;z;/v"):e { Management } (primary) }
: . core service
{ Distributor |- C‘?[):El:‘gfe <) [Distributor }4/[(backup }
_ / evaluator }
{ Evaluator core service Q { Evaluator (primary)
evaluator }
(backup)

(backup)
o 7 state
communication synchronisation

‘ CORBA
client

CORBA
client

« Design-time (programming) vs. Runtime (crash) faults
* Analytic redundancy + consensus protocols

« Hot/warm/cold replication:
— Group comm., checkpointing to memory/disk

description/

Design time FT aspect

IDL

- service description

- sequential service implementation
- state, synchronization

Configuration time

- description of FT requirements

interface

N

- environment description

- distribution/replication of components Aspect weaver

Runtime

- clients’ requests with QoS (FT)
- request is accepted or exception returned

=

|

oo

- reflection (implemented by reflector)

client

reflector

Description of a Service

ervice <Name>Name of's

ervice for registration with implementation repositoryinterface |

NT-based GUI — Description of a
FT Fractal Service

i generating fault tolerant CORBA-services

: service information l canfiguration l instanciatiunl ft-zervice management l

gervice information repoziton

ZEMVICE Namme zervice properties
|Fran:ta| ﬂ specific exaluatar for computation faults
FractalE waluatar ﬂ
itterface type id
- - ; , redundant services
|||::'|--F’E"3t'5‘l--I .0 implemertation
= [Fractal
service Fractal | v fimtele s [FractalE valuator
state_synchio = none v parallel independent [MumberCollector

statelezs = true

interface_type_id = IDL:Fractal1.0
impl_independent = true
redundant_services =
specific_evaluator = FractalEvaluator [cold ztandby

[hat standby
[hat replication

ztate zynchronization

manage repositary

register by repositany unregister by repoziton

Description of Fault Tolerance Requirements

ft service FT FractalTest (
base service = Fractal
fault class = computation

// (crash|computation)

number of faults =1
phase of creation = implementation

// (implementation|runtime)
optimize criteria = resource usage, response time,

fault recovery overhead

Requirements for the
FT Fractal service

i generating fault tolerant CORBA-zervices

service information configuration linstanciatiunl ft-zervice managementl

zervice information browszer zervice description
zervice Fractal { FT_Fractal{
FractalE valuator statesynchra = none style = parallel
MNumberCollector stateless = true ztate_synchronization = none
interface_tepe_id = IDL:Fractal:1.0 bazic_gervices = [Fractal jfk], [Fractal,pit], [Fractal fo]
impl_independent = true evaluatorz = [Defaultvoter bridge_host]

redundant_zervices =
zpecific_ewvaluator =
FractalE valuator

fault tolerance requirements

ft-zervice name: |FT_FractaI

base service name: |Frau:ta| ﬂ
ber of faults: =
felisinile s i | Zl nodes of the framework
fault clazz

" zrazh |
* computation

i add wirtual node
phaze of fault creation

* [untime ¥ itk
" design time [¥ pit
[st

optimize criteria

Edl rezponze time
[rezource usage
[fault recovery overhead | ™

configure

Configuration of FT Service

 (Generated based on information about environment, FT
requirements and service description

FT FractalTest {

style = sequential

state synchronisation = none

basic services = [Fractal, zeus], [Fractal 2,queen]
evaluators = [Fractal eval,zeus], [Fractal eval, queen]

« Example shows primary/backup replication without state
synchronization based on functional redundancy (multiversion)

* The service may tolerate a single computation fault

Instantiation of the FT Fractal service

i generating fault tolerant CORBA-zervices

ZEMVICE infn:-rmati-:nnl cohfiguration |

l ft-zervice management l

ft-zervices zemvice descrption
FT_Fractal FT_Fractal{
FT_MumberCollector style = parallel

remove description ‘

inztanciate ft-zervice descrption

ingkanciate ‘

state_synchronization = none
bazic_services = [Fractal [fk], [Fractal pit], [Fractalzfo]
evaluators = [Defaultvoter bridge_host]

harme of the new instance: |Fractal5tar

IO of the new instance: {10/: 000000000000001 d43444c32666

i generating fault tolerant EDHBA-sewices

gervice information l configuratian l inztanciation

SR}
=11 FTServicesFramewark,
—1-{_1 ProceszsFactaries
i ik
E pit
[=fo
£ bridge_host
=1L FTServices
=1-L_1 FT_Fractal
[InstanceM ame
£ FractalStar

Component Replication as an Aspect

Open questions: e A

A

 How can aspects be identified?
. meta level
— General: Synchronization,
Communication, Fault-tolerance o
_ . _ _ inheritance
— Domain-specific: Business, Medical,...
 How can aspects be described? library
— Language extensions, libraries Description
>
— Separate aspect description orog. aspect
language(s?) lang. lang.
 How to combine aspects and S
program logic?
dynamic

— Library, generator (aspect weaver)

Information

Document Type Description for
Replication

<?xml encoding="US-ASCII"?>
<!ELEMENT Replication(Class,Methods, Strategy,Configuration)>
<!ELEMENT Class(#PCDATA)>
<!ELEMENT Methods(MethodName)+>
<!ELEMENT MethodName(#PCDATA)>
<IATTLIST MethodName type (read|write) #REQUIRED>
<!ELEMENT Strategy(Active?,Passive?)+>
<!ELEMENT Active EMPTY>
<IATTLIST Active ActiveState(StateMachine|LeaderFollower) #REQUIRED>
<IELEMENT Passive EMPTY>
<IATTLIST Passive PassiveState(hot|warm|cold) #REQUIRED>

<!ELEMENT Configuration(DefaultStrategy,MaxNumOfReplica,MinNumOfReplica,
NameOfReplica?,HostRequired?,0OneReplicaPerHost?)>

<!ELEMENT DefaultStrategy EMPTY >

<IATTLIST DefaultStrategy type(ActiveMachine|ActivelLeader|
PassiveHot|PassiveWarm|PassiveCold) #REQUIRED>

<!ELEMENT MaxNumOfReplica(#PCDATA)>
<!ELEMENT MinNumOfReplica(#PCDATA)>

Aspect Description for a particular
Java-class

<?xml version="1.0"?>
<!DOCTYPE Replication SYSTEM “replication.dtd">
<Replication>
<Class>Date.java</Class>
<Methods>
<MethodName type="read"> getDate </MethodName>
<MethodName type="write"> setDate </MethodName> </Methods>
<Strategy>
<Active ActiveState="StateMachine"></Active> </Strategy>
<Configuration>
<DefaultStrategy type="ActiveMachine"></DefaultStrategy>
<MaxNumOfReplica> 4 </MaxNumOfReplica>
<MinNumOfReplica> 2 </MinNumOfReplica>
<NameOfReplica> DateTest </NameOfReplica>
<HostRequired> trave.informatik.hu-berlin.de </HostRequired>

<OneReplicaPerHost value="true"></OneReplicaPerHost> </Configuration>

</Replication>

escription of Component Replication
using XML

Ef_?, TreeYiewer: replikation_xml
File Shortcuts

Tree View

Source View

_4 =Replication=
@ 4§ =Class=
Diate java
@y =Methods=
@ 4 =MethodMName type="read"=
getDate
@ 4 =MethodMame type="write"=
setDate
@ 4 =Strategy=
=Active ActiveState="StateMachine"=
@ 4 =Configuration=

@ 4 =MaxMNumOReplicaz
4

@ 4 =MinNumOfReplica=
2

@ 4 =NameOReplica=
Datumstest

@ 4 =MaxHopColocation=
3

=0neReplicaPerHost value="true"=

=DefaultStrateqy type="ActiveMaching"=

xml wersion="1.0"2>
'DOCTYPE Replication 3Y¥3TEM "replikation.dtd™>

!—- Example of a XML description for replication --X>
Replicatiomns-
#ClassxDate, java</Classs
<Methoda>
<MethodName type="read"> getDate </Methodlifame>-
<MethodName type="write”> setDate </MethodName>
< /Methods>
<itrateogy>
<hctive Activedtate="3tateMachine™>=</Actives>
< /trategy
<Configuration>
<Defaultitrategy type="aActiveMachine”>=</Defaultitrategy>
<MaxNunOfReplica> 4 < /MaxMmlfReplicas-
<MinMunOfReplica> 2 </Minfhm0fReplicas-
<NamelfReplica> DatumstesT </ /MWameuUCKEpllcas
<MaxHopColocation> 3 < /MaxHopColocation>
<0OneReplicaPerHost walue="true”»</0neReplicaPerHost>
</Configquratiomn=

JReplication:

Based on
IBM Alphaworks
toolkit

Work in Progress

Definition of a general aspect language for description of non-
functional component properties

— XML-based

Focus on additional criteria for service configuration: resource
usage, security, timing behavior, co-locations

— Generation of Secure DCOM Services

Design patterns

— Software Engineering approach to System Composition based on
Non-functional properties

Conclusions

« Availability will become one of the most
sought after qualities for distributed services

* Off-the-shelf components and standard
middleware are the only feasible approach

« Steps towards engineering of software for
availability have been presented

