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Overview

• Motivation:
– Fault-tolerant computing on off-the-shelf components

– Standard middleware: CORBA

• Description of non-functional component properties
– Fault-models and protocols

– Aspect-oriented programming

• Case studies:
– Automatic generation of fault-tolerant services

– XML-based aspect description for component replication

• Conclusions



RESPONSIVE COMPUTER SYSTEMS

are dependable real-time systems, that
deliver satisfactory service in a timely
manner under given fault and load
hypotheses.

DEPENDABILTY RC REAL TIME

Responsive Computing



Fault model at the component level
• Every possible fault. This class includes

the authenticated Byzantine fault.

• PE behaves in an arbitrary or malicious
manner, but is unable to imperceptibly
change an authenticated message.

• PE fails to produce a correct output in
response to a correct input.

• PE completes an assignment before or
after its specified time frame or never.

• PE fails to meet a deadline or to begin a
task.

• Processing element (PE) loses its
internal state or halts. The processor is
silent during the fault



Choosing the appropriate protocols

• A variety of protocols handle different fault classes.
– Establish a consistent view onto system state (Consensus)

– Among (non-faulty) processors

• Framework deals with:
– crash faults (of components of processors)

– incorrect computation faults

• The system maps timing and omission faults onto
crash faults and stops a faulty CORBA component.
– (due to limitations inherent in CORBA communication (IIOP))

• No detection mechanisms for Byzantine faults.

Problem: Description of a component‘s 
fault-assumptions/models



Description of non-functional Properties:
Aspect-Oriented Programming

AspectJ: http://www.parc.xerox.com/spl/projects/aop/
Voyager ORB: http://www.objectspace.com

• Objects have been a great success (data-abstraction,
encapsulation)

– Functional-decomposition

• Objects don't seem to help as much for:
synchronization, multi-object protocols, replication,
resource sharing, distribution, memory management,

• Rather than staying well localized within a class, these concerns
tend to cross-cut the system's class and module structure.

• Much of the complexity in existing systems appears to stem
from the way in which the implementation of these kinds of
concerns ends up being intertwined throughout the code.



Aspects / Facets

• Aspects are a new unit of software modularity, that appears to
provide a better handle on managing cross-cutting concerns.

• aspects are intended to be used in both design and
implementation.

• During design the concept of aspect facilitates thinking about cross-
cutting concerns as well-defined entities.

• During implementation, aspect-oriented programming languages
make it possible to program directly in terms of design aspects.

• Promising way to describe non-functional component properties:

– fault-tolerance measures, resource constraints

– timing behavior, security, mobility



Case study: Automatic Generation of fault-
tolerant CORBA Services

• Programmer implements sequential service and gives design time
information about possible fault-tolerance measures

• Service configurator starts multiple copies of server objects based
on chosen fault-model and available network nodes (replication in
space vs. time)

• Client may request some fault tolerance level with each request and
depending on actual service configuration the request is either
fulfilled or an exception returned

• GUI for service configuration; NT-based implementation



Component Model for a
Fault-tolerant Service

• Design-time (programming) vs. Runtime (crash) faults

• Analytic redundancy + consensus protocols

• Hot/warm/cold replication:
– Group comm., checkpointing to memory/disk
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Design time

- service description
- sequential service implementation
- state, synchronization

Configuration time

- description of FT requirements
- environment description
- distribution/replication of components

Runtime

- clients’ requests with QoS (FT)
- request is accepted or exception returned
- reflection (implemented by reflector)

description/
FT aspect

client

IDL
interface

reflector

Aspect weaver



Description of a Service

service <Name>Name of service for registration with implementation repositoryinterface_type_idType ID of the service’s IDL – interfacestate_synchroEnumeration of synchronisation schemes (hot, warm, coldoder none) supported by the service.Execept for scheme none, the interfaceStateSynchronisationManagement has to be supportedstatelessFlag, which describes whether service is stateless or notimpl_independentFlag, which describes whether simultaneous execution of multiplecopies of the service is acceptable or notspecific_evaluatorName of a service-specific evaluator (I.e.; decision unit)redundant_servicesEnumeration of functionally redundant service implementations.



NT-based GUI – Description of a
FT Fractal Service



Description of Fault Tolerance Requirements

ft_service FT_FractalTest {

base_service = Fractal 

fault_class = computation

//(crash|computation)

number_of_faults = 1

phase_of_creation = implementation

//(implementation|runtime)

optimize_criteria = resource_usage, response_time,

  fault_recovery_overhead

}



Requirements for the
FT Fractal service



Configuration of FT Service

• Generated based on information about environment, FT
requirements and service description

FT_FractalTest {

style = sequential

state_synchronisation = none

basic_services =  [Fractal,zeus], [Fractal_2,queen]

evaluators =  [Fractal_eval,zeus], [Fractal_eval,queen]

}

• Example shows primary/backup replication without state
synchronization based on functional redundancy (multiversion)

• The service may tolerate a single computation fault



Instantiation of the FT Fractal service



Component Replication as an Aspect
Open questions:

• How can aspects be identified?
– General: Synchronization,

Communication, Fault-tolerance

– Domain-specific: Business, Medical,...

• How can aspects be described?
– Language extensions, libraries

– Separate aspect description
language(s?)

• How to combine aspects and
program logic?
– Library, generator (aspect weaver)

meta level

Composition

library

inheritance

Description

aspect 
lang.

prog. 
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Information

dynamic

static



Document Type Description for
Replication

<?xml encoding=“US-ASCII“?>
<!ELEMENT Replication(Class,Methods,Strategy,Configuration)>

<!ELEMENT Class(#PCDATA)>
<!ELEMENT Methods(MethodName)+>

<!ELEMENT MethodName(#PCDATA)>
<!ATTLIST MethodName type (read|write) #REQUIRED>

 <!ELEMENT Strategy(Active?,Passive?)+>
<!ELEMENT Active EMPTY>
<!ATTLIST Active ActiveState(StateMachine|LeaderFollower) #REQUIRED>
<!ELEMENT Passive EMPTY>
<!ATTLIST Passive PassiveState(hot|warm|cold) #REQUIRED>

<!ELEMENT Configuration(DefaultStrategy,MaxNumOfReplica,MinNumOfReplica,
NameOfReplica?,HostRequired?,OneReplicaPerHost?)>

<!ELEMENT DefaultStrategy EMPTY>
<!ATTLIST DefaultStrategy type(ActiveMachine|ActiveLeader|

PassiveHot|PassiveWarm|PassiveCold) #REQUIRED>
<!ELEMENT MaxNumOfReplica(#PCDATA)>
<!ELEMENT MinNumOfReplica(#PCDATA)>   ...



Aspect Description for a particular
Java-class

<?xml version=“1.0“?>
<!DOCTYPE Replication SYSTEM “replication.dtd“>
<Replication>

<Class>Date.java</Class>
<Methods>

<MethodName type=“read“> getDate </MethodName>
<MethodName type=“write“> setDate </MethodName>  </Methods>

<Strategy>
<Active ActiveState=“StateMachine“></Active> </Strategy>

<Configuration>
<DefaultStrategy type=“ActiveMachine“></DefaultStrategy>
<MaxNumOfReplica> 4 </MaxNumOfReplica>
<MinNumOfReplica> 2 </MinNumOfReplica>
<NameOfReplica> DateTest </NameOfReplica>
<HostRequired> trave.informatik.hu-berlin.de </HostRequired>
<OneReplicaPerHost value=“true“></OneReplicaPerHost>  </Configuration>

</Replication>



Description of Component Replication
using XML

Based on
IBM Alphaworks
toolkit



Work in Progress

• Definition of a general aspect language for description of non-
functional component properties
– XML-based

• Focus on additional criteria for service configuration: resource
usage, security, timing behavior, co-locations
– Generation of Secure DCOM Services

• Design patterns
– Software Engineering approach to System Composition based on

Non-functional properties



Conclusions

• Availability will become one of the most
sought after qualities for distributed services

• Off-the-shelf components and standard
middleware are the only feasible approach

• Steps towards engineering of software for
availability have been presented


