
Speed vs. Memory Usage
-

An Approach to Deal with Contrary Aspects

Wolfgang Schult and Andreas Polze
Hasso-Plattner-Institute

14440 Potsdam, Germany
{wolfgang.schult|andreas.polze}@hpi.uni-potsdam.de

ABSTRACT
Besides design and implementation of components, software
engineering for component-based systems has to deal with
component integration issues whose impact is not restricted
to separate components but rather affects the system as a
whole. The bigger the software system is, the more diffi-
cult it will be to deal with. Aspect-Oriented programming
(AOP) addresses these cross-cutting, multi-component con-
cerns. AOP describes system properties and component in-
teractions in terms of so-called aspects. Often, aspects ex-
press non-functional component properties, such as resource
usage (CPU, memory, network bandwidth), component and
object (co-) locations, fault-tolerance, timing behavior, or
security settings. Typically, these properties do not mani-
fest in the components’ functional interfaces.

Aspects often constrain the design space for a given soft-
ware system. System designers have to trade off multiple,
possibly contradicting aspects affecting a set of components
(e.g.; the fault-tolerance aspect may require replication of
component data, whereas the security aspect may prohibit
it). Component software may be deployed in varying con-
texts, maybe requiring emphasis on only a few of the aspects
considered during design and implementation. Static aspect
weavers often require compromises with respect to the gen-
erality of services provided by a component system.

In this paper, we focus on dynamic management of as-
pect information during program runtime. We introduce an
approach called ”dynamic aspect weaving” to interconnect
aspect code and functional code. Using our approach, it
is possible to decide at runtime whether objects living in-
side a component should be instantiated with support for a
particular aspect or not. We present a distributed Mandel-
brot computation as an example and discuss dynamic aspect
weaving as a technique to manage speed versus memory us-
age trade-offs. We have implemented our approach in the
context of the C# language and the Microsoft .NET and
the ROTOR environment.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2002 ACM X-XXXXX-XX-X/XX/XX ... $5.00.

1. INTRODUCTION
There exists a variety of application areas for Aspect-

Oriented Programming (AOP). Generally, it is very accept-
able to have a preprocessor-like aspect-weaver to intercon-
nect functional code and aspect code. However, sometimes
it is desirable to postpone the decision about whether as-
pect information is to be interwoven with a particular com-
ponent until program runtime. For instance, one may have
a huge resource consuming image processing algorithm lo-
cated in a component, and depending on system load and
available computing nodes a trade-off between data distri-
bution, memory allocation scheme, and utilization of com-
puting power has to be made at runtime. It might be de-
sirable to distribute calculations for better performance if
computing nodes are available. Minimizing local memory
usage might be at high priority if the same program is run
in a different setting. Both are crosscutting concerns. An
aspect may be defined to manage distribution of method
invocations across machine boundaries, whereas a different
(somewhat contrasting) aspect may deal with local and re-
mote memory utilization during a distributed computation.

Typically, one has to decide at compile time whether an
aspect should be interwoven with a set of components or
not. Classical AOP techniques provide neither a solution
to ’switch off’ (ignore) aspect code at runtime nor to dy-
namically interweave another aspect with the component
software.

In this paper, we present a solution to this problem and
demonstrate how to interweave previously defined aspects
with functional component code. This ’Dynamic Aspect
Weaving’ is promising because of its flexibility: neither at
design nor at compilation time does a definite decision has
to be made about whether a particular aspect should be ap-
plied to a set of components or not. Aspects specialized for a
particular situation can be defined and can be interwoven de-
pending on actual runtime requirements. Furthermore one
can parameterize the aspects during program runtime. We
discuss how this can be accomplished without usage of a
special ’aspect weaver’ tool.

The remainder of the paper is organized as follows: Sec-
tion 2 presents related work. Section 3 describes our ap-
proach to dynamic aspect weaving. In Section 4 we demon-
strate a case study whose experimental evaluation is pre-
sented in Section 5. In Section 6 we summarize our conclu-
sions.

2. RELATED WORK
The concept of aspect-oriented programming (AOP) offers

an interesting alternative for specification of non-functional
component properties (such as fault-tolerance properties or
timing behavior). There are a variety of language extensions
to deal with AOP. One of which, AspectJ [13], a Java exten-
sion, can be cited as the most prominent example. The cen-
tral concept of most AOP-frameworks is a join point model
described in [12][5].

JAC is a Java framework that provides support for dy-
namic aspect-oriented applications [20]. With JAC it is also
possible that an aspect can be woven and unwoven at run-
time. An aspect oriented program in JAC is entirely written
in regular Java and consists of several different parts, such
as base program, and other different aspect programs. The
weaver deploys the aspect objects so that the aspect pro-
gram crosscuts the base program.

Mehmet Aksit has developed the composition filters ob-
ject model, which provides control over messages received
and sent by an object [3][1]. In this work, the component
language follows traditional object-oriented programming
techniques, the composition filters mechanism represents an
aspect language that can be used to control a number of as-
pects including synchronization and communication. Most
of the weaving happens during runtime.

The authors have implemented a static aspect weaver,
which uses the unmanaged metadata interfaces from .NET
to interweave aspect code [21].

A restricted technique for dynamic aspect weaving for
.NET has been described in [15]. However, this solution uses
the current internal debug interfaces of the .NET framework
implementation to interweave aspect code during runtime
and is therefore less general and portable than our approach.

3. DYNAMIC ASPECT WEAVING
Dynamic aspect weaving means that a component (a tar-

get class) and an aspect class will become interwoven during
runtime. There is no need for the aspect class to have a pri-
ori knowledge about the target class and vice versa. To
understand how the weaving process works, some notions
have to be defined.

3.1 What is an Aspect Class?
An aspect description for a set of components focuses on

crosscutting concerns. In our case, an aspect is a simple
C# class derived from the base class Aspect. It will be
called aspect class. Aspect classes may implement methods,
properties, and member variables. In any case, an aspect
class describes a way to modify the behavior of another class
(the so-called target class). Therefore, there is no point to
instantiate an aspect class on its own. Rather it has to
be instantiated jointly with a target class. This process is
called dynamic aspect weaving. Its technical details will be
described later in this section.

3.2 Connection Points
As mentioned above, an aspect class works only in con-

junction with an instance of another class. At a connection
point both will become interwoven. Methods of the aspect
class can be identified as connection points, which is indi-
cated by the C# call attribute above the method definition
in the aspect class. The call attribute is defined as follows:

[call(Invoke.InvokeOrder {, Alias=AliasName })]

During dynamic aspect weaving, all of the connection points
inside an aspect class will become interwoven with a target
class’s method if at least one of the following requirements
is met:

1. The method name and the signature are equivalent.

2. If there is an AliasName defined, and the method name
from the target class is the same as the alias, and the
signatures of both are equivalent.

3. If there is an AliasName and the alias contains a wild-
card at the end, or the signature of the Aspect class
method contains wildcards, and the target method
matches.

The following example demonstrates requirement 1:

[call(Invoke.Instead)]
void mymethod(int i) { /∗ ... ∗/ }

In this case any target method mymethod with one int
as parameter and void as result will interweave with this
method in the aspect class.

To demonstrate requirement 2 let us assume that one
defines Alias=”myspecialmethod” for a method. This
results in interweaving all target methods named myspe-
cialmethod with an int parameter and a void with the
annotated method in the aspect class.

Requirement 3 basically says that if one modifies the alias
to Alias=”my*” every target method beginning with ”my”
and the same parameters will become interwoven. Further-
more one can use signature wildcards. A wildcard for the
result type is object, and for the parameters params ob-
ject[], this is like a method with variable arguments. An
alias has to be defined in order to flag the argument list
params object[] as wildcard. The following connection
point:

[call(Invoke.Instead, Alias="*")]
object catchall(params object[] args)

will become interwoven with every method in the target class
and args will contain each parameter one passes through the
method. For instance, if the target class has a method void
f(int i, double d), then args[0] will contain i and args[1]
will contain d after the method is called.

Now, since we have described the rules for interweaving
connection points with target methods, we will focus on
the actual algorithm implementing dynamic aspect weav-
ing. This is described by the InvokeOrder parameter of the
call attribute. There are three possibilities:

• Invoke.Before: The aspect method of the connection
point will be invoked before the target method will be
called.

• Invoke.After: As to be expected, the aspect method
will be invoked after the target method has been called.

• Invoke.Instead: The target method will not be called
automatically - but can be called from inside the as-
pect method.

The first two cases are useful if one wants to trace method
calls only. The last case is to be used in order to gain full
control over the target method’s behavior.

3.3 Aspect Context
When defining an Invoke.Instead connection point, one

needs a mechanism to call the appropriate target class meth-
od. The problem is that neither the type of the target class
(the aspect class can become interwoven with any type) nor,
in some cases, the signature of the called method (this is
when one uses signature wildcards) are known. The solution
is to define a Context property in the Aspect base class.
This property allows access to an object of type Aspect-
Context which contains the required information. There
are two methods defined for AspectContexts:

public object Invoke(params object[] args)

public object InvokeOn(object target , params object[]
args)

The first simply invokes the target class’s method on an ob-
ject with the given parameters. The second method allows
invocation of the target method on a different, arbitrarily
chosen instance (target) of the target class. This is useful if
there are special instances of the target class stored in the
aspect code, and one wants to invoke these.

3.4 Implementation Issues
In the previous section, we have introduced our notions

of an aspect class, of connection points, and of object con-
texts. Here, we are going to discuss our implementation of
this concept. Our approach relies on a number of language
features, namely:

• Support of attribute definition.

• Support of reflection to analyze the target class’s and
the aspect class’s signatures (methods and their pa-
rameter types).

• Runtime code generation, to emit the interwoven class.

We have implemented our solution based on Microsoft .NET.
The Microsoft .NET runtime environment allows to gener-
ate, load, and run code on the fly. This code can be pre-
sented to the environment in an intermediate language (IL).
There exist a variety of programming languages which sup-
port .NET and map on the same intermediate language.
Since our approach it is possible to interweave an aspect
written in one language (say C++) with a component writ-
ten in a different .NET language (say Pascal).

We have implemented our technique for dynamic aspect
weaving in a .NET library. This library provides several
classes and attributes defined within the namespace As-
pects:

• Aspect is the base class for all defined aspects.

• Weaver is a class which implements the weaving func-
tionality.

• Call is an attribute to define connection points.

• AspectContext allows invocation of instance meth-
ods via Aspect.Instance.

3.5 The Dynamic Aspect Weaver
As described above, the Aspects namespace contains a

class called Weaver. It provides a function named Create-
Instance to interweave a given target class. This function

TARGET
CLASS

ASPECT
CLASS

CreateInstance

TARGET
CLASS

ASPECT
CLASS

Connection Points

Woven Type

Figure 1: The Weaving Process

does the same as the new statement - it creates a new ob-
ject of a given class (the target class). But furthermore this
function interweaves the target class with an aspect-object.
This can be done in two ways; dynamic or static. The dy-
namic version is as follows:

A a=Weaver.CreateInstance(typeof(A), null, new MyAspect
()) as A;

In this example, an instance of the class A will be gen-
erated and dynamically interwoven with an aspect object
of MyAspect. In the static case one can simply use .NET-
attributes to express that a class should be interwoven with
a certain aspect:

[MyAspect]
class A
{ /∗ ... ∗/ }
/∗ ... ∗/
A a=Weaver.CreateInstance(typeof(A), ...) as A;

Giving the aspect instance explicitly as a parameter to Cre-
ateInstance is more flexible than naming it via attribute - as
the aspect and its parameters can be identified at runtime.
The code implementing dynamic aspect weaving first looks
for a custom attribute derived from Aspect. If there is no
aspect given, the CreateInstance call is equivalent to new
A(args). What happens during the creation is illustrated in
Figure 1. The weaver looks for connection points and tries
to join them with the target class’s methods as described
above. With this information, it builds a new type, and cre-
ates a new instance of this type. After that the weaver calls
a special method named ctor in the aspect, to inform them
that it was interwoven with a newly created object. This
method can be overridden and has the following signature:

virtual void ctor(Weaver weaver , object target , params
object[] args)

Inside the method, the parameters have the following mean-
ing:

• weaver is the aspect weaver itself.

• target is the new interwoven instance.

• args are the constructor parameters.

Finally, the newly constructed and interwoven object in-
stance will be returned to the caller.

CX

CY

Memory Hard disk

Calculate(...)

Figure 2: Mandelbrot Function Call

CX

Hard disk

Memory
1

Memory
1

Memory
1

...

Calculate(...)

Calculate(...)

Calculate(...)

Calculate(...)st1

nd2

thCY

Figure 3: Function Call with the SaveMemory Aspect

4. CASE STUDY -
OPTIMIZING RESOURCE USAGE

Listing A in the appendix shows a C# class which calcu-
lates a Mandelbrot set [18]. The input for the algorithm is
a filename, a bounding box, and a resolution.

Figure 2 illustrates the behavior of our Mandelbrot com-
putation: The algorithm first calculates the whole Mandel-
brot set in memory and then stores it to the hard disk. For
small resolutions this is fine. But what happens if the reso-
lution is increased? The amount of memory consumed will
increase polynomial (one needs cx*cy memory storage). A
possible solution is to rewrite the algorithm. But under cer-
tain circumstances, there is no possibility to do that (i.e.
the algorithm exists as binary only), so ... another solution
is needed.

4.1 The Save Memory Aspect
The idea is that the function calls are split so that single

lines will be processed in memory and subsequently written
to separate files on the hard disk. Finally, all these files are
joined together to complete the Mandelbrot computation.
Figure B shows this approach. The envisioned effect can
be accomplished using an aspect class (which would not be
visible to clients of our Mandelbrot computation). Listing
B shows a possible implementation of this aspect.

As visible in the aspect class, the function calculate is de-
fined as a connection point. As described in Section 3, if
the target class contains a function Calculate with the same
signature, then both will become interwoven. The for-loop
simply invokes, via the aspect context, the Mandelbrot com-
putation line by line. For n lines, it will generate n files on
the hard disk. Finally, these n files will become concatenated
to form a new file containing the data originally requested.

4.2 The Distribution Aspect
The second goal was to utilize all available processors in

a system. Again, we are defining an aspect to tackle this
problem. Figure 4 demonstrates what has to be done: First,
one instantiates a replica of the original Mandelbrot object
on each processor available. Second, on every function call,

CX

CY1

Memory

Calculate(...)

Thread 1

hard disk

CX

CY2

Memory

Calculate(...)

Thread 2

InvokeOn(instance)1

InvokeOn(instance)2

Mandelbrot copy Mandelbrot copy

Original Mandelbrot-Component

Figure 4: Function Call with the Distribution Aspect

one splits the calculation up and delegates each part to a
separate thread. One can use the .NET threadpool for this.
The original Mandelbrot object gets the results back from
each replica and joins them together. Listing C shows an
excerpt of the actual C# implementation.

The aspect class contains three important functions. The
first is ctor, which will be called by the Weaver when the
instance is created. It is used to create additional instances
of the same type which may process function calls in parallel.
The second is Calculate. This method contains the call
attribute, which defines it as connection point as well. Here
the function calls are executed in separate threads operating
on disjunct copies of the Mandelbrot object.

4.3 The Client Side
On the client side, only the instantiation of the Mandel-

brot class changes. Depending on the actual runtime en-
vironment, one or the other aspect will become interwoven
with the Mandelbrot class (Listing 1).

Mandelbrot mb;
// we need less memory usage
if(opt_memory.Checked)
mb=Aspects.Weaver.CreateInstance(typeof(Mandelbrot),null,new

SaveMemory()) as Mandelbrot;
// we need more performance
else if(opt_speed.Checked)
mb=Aspects.Weaver.CreateInstance(typeof(Mandelbrot),null,new

Distribute("d:/temp")) as Mandelbrot;
// we need nothing of both
else mb=new Mandelbrot();

Listing 1: The Client Side

The function call initiating the actual Mandelbrot compu-
tation does not change.

5. PERFORMANCE MEASUREMENTS
After implementing a dynamic weaver and designing two

aspects, we evaluate the performance impact of our dynamic
aspect weaver. For our experiments, we have used a 1GHz
Dual-Pentium III System with 256MB RAM. We show here
the impact of both the Distribution and the Save Memory
Aspect on our system resources. Figure 5 shows the aver-
age duration of the mandelbrot calculation in dependence on
the number of calculated columns in the mandelbrot matrix
(CX). We have sketched out two representive row counts
(CY) for the three cases. For a row count of 4096 one can see
that the algorithm with the Distribution Aspect assigned is
approximately twice as fast as it is without an aspect. With

no Aspect

Distribution
Save Memory

row count=20480

row count=4096

Figure 5: Comparison of average duration (20 measurements
per point) between both aspects and without any aspect in
the mandelbrot component

no Aspect

Distribution
Save Memory

row count=20480

row count=20480
row count=4096

Figure 6: Comparison of average peak memory usage (20
measurements per point) between both aspects and without
any aspect in the mandelbrot component

a Save Memory aspect we have a performance gap of approx-
imately fifty percent compared to the calculation without an
aspect. But with a row count of 20480 the situation changes
markedly.

Beginning at a column count of approximately 17200 the
algorithm assigned with the Save Memory aspect gets the
best performance. The explanation for that is shown in
Figure 6. One sees that in the measurements with a column
count 12288 the maximum of available physical memory has
been exhausted. On the other hand, the algorithm assigned
with the Save Memory aspect uses a consistently low amount
of memory. This prevents it from swapping out memory and
so decreasing its performance.

6. CONCLUSIONS
Aspect-oriented programming (AOP) is a relatively new

approach for separation of concerns in software develop-
ment. AOP makes it possible to modularize crosscutting
aspects of a system.

We have presented our approach to dynamic management
of aspect information at program runtime. We have intro-
duced a technique called ”dynamic aspect weaving” which
allows for late binding (weaving) of aspect code and func-
tional code. Using our approach, it is possible to decide at
runtime whether a component should be instantiated with
support for a particular aspect or not. We have implemented
our approach in context of the language C# and the .NET
environment. Relying on the .NET support for a variety
of programming languages, our approach is not restricted
to C#, but works for all of the .NET languages and other
.NETenvironments like ROTOR, among others.

Our current implementation has some constraints for the
programmer of a component. Currently, only virtual meth-
ods can be interwoven dynamically. The reason for this lies
in our implementation of late binding of the function calls.
Currently the Weaver ”overrides” the function so that the
virtual method table maintained inside the .NET virtual
machine points to the woven function (the version enriched
with aspect information). Other members of a class, such as
fields, properties, static, and class functions currently can-
not be accessed this way. However, recursively applying the
AOP techniques described here and in [21], it is a simple
task to generate proxy classes which substitute non-virtual
member functions and fields with their virtual counterparts.

7. REFERENCES
[1] M. Aksit and L. Bergmans. Composing multible

concerns using composition filters. Communications of
the ACM, 44, Issue 10:51–57, Oktober 2001.

[2] M. Aksit and B. Tekinerdogan. Aspect-oriented
programming using composition-filters. In ECOOP’98
Workshop Reader. Springer Verlag, 1998.

[3] M. Aksit and B. Tekinerdogan. Solving the modeling
problems of object-oriented languages by composing
multiple aspects using composition filters. AOP’98
workshop position paper, 1998.

[4] T. Archer. Inside C#. Microsoft Press, 1 edition, 2001.

[5] AspectJ Homepage. http://www.aspectj.org/, 2002.

[6] J. Baker and W. Hsieh. Runtime aspect weaving
through metaprogramming. In 1st International
Conference on Aspect-Oriented Software Development

(AOSD), pages 86–95, Enschede, The Netherlands,
April 22-26 2002. ACM press.

[7] T. Elrad, M. Aksit, G. Kiczales, K. Lieberherr, and
H. Ossher. Discussing aspects of aop. In
Communications of the ACM, volume 44, pages 33–38,
Oktober 2001.

[8] T. Elrad, R. E. Filman, and A. Bader.
Aspect-oriented programming. In Communications of
the ACM, volume 44, pages 30–32, Oktober 2001.

[9] K. Gybels. Using a logic language to express
cross-cutting through dynamic joinpoints. In Second
Workshop on Aspect-Oriented Software Development,
Bonn, Germany, February 21-22 2002.

[10] S. Hanenberg and R. Unland. Concerning aop and
inheritance. In Aspektorientierung - Workshop der
GI-Fachgruppe 2.1.9 Objektorientierte
Software-Entwicklung, Paderborn, Germany, May 3-4
2001.

[11] S. Hanenberg and R. Unland. A proposal for
classifying tangeled code. In Second Workshop on
Aspect-Oriented Software Development, Bonn,
Germany, February 21-22 2002.

[12] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten,
J. Palm, and W. G. Griswold. Getting started with
aspectj. Communications of the ACM, 44, Issue
10:59–65, October 2001.

[13] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. V. Lopes, J.-M. Loingtier, and J. Irwin. Aspect
oriented programming. In European Conference on
Object-Oriented Programming (ECOOP), Finnland,
June 1997. Springer Verlag LNCS 1241.

[14] J. O. K.Lieberherr, D. Orleans. Aspect-oriented

programming with adaptive methods.
Communications of the ACM, 44, Issue 10:39–41,
Oktober 2001.

[15] J. Lam. My runtime aspect weaver.
http://www.iunknown.com, 2002.

[16] C. V. Lopes and G. Kiczales. Recent Developments in
AspectJ. Xerox Palo Alto Research Center.

[17] D. Mahrenholz, O. Spinczyk, and
W. Schrder-Preikschat. Program instrumentation for
debugging and monitoring with aspect c++. In
International Symposium on Object-oriented Real-time
distributed Computing (ISORC), pages 249–256,
Crystal City, VA, USA, April 29 - May 1 2002.

[18] B. Mandelbrot. The Fractal Geometry of Nature.
Freeman, San Francisco, 1982.

[19] Microsoft Cooperation,
http://msdn.microsoft.com/net/ecma/. ECMA C#
and Common Language Infrastructure Standards,
2001.

[20] R. Pawlak, L. Seinturier, L. Duchien, and G. Florin.
Jac: A flexible solution for aspect-oriented
programming in java. In Reflection 2001, September
2001.

[21] W. Schult and A. Polze. Aspect-oriented programming
with C# and .NET. In International Symposium on
Object-oriented Real-time distributed Computing
(ISORC), pages 241–248, Crystal City, VA, USA,
April 29 - May 1 2002.

[22] W. Schult and A. Polze. Dynamic aspect-weaving with
.NET. In Workshop zur Beherrschung
nicht-funktionaler Eigenschaften in Betriebssystemen
und Verteilten Systemen, TU Berlin, Germany,
November 7-8 2002.

APPENDIX

A. THE MANDELBROT CLASS
public class Mandelbrot
{

// calculates a given point of the Mandelbrot matrix
private byte CalculatePoint(double x, double y) { /∗ ...∗/ }

// only this method is accessible from outside
// it calculates the matrix and
// stores the result to the hard disk
public virtual void Calculate(string filename, double x1, double y1, double x2, double y2, int xRes, int yRes)
{
double dAddx=(x2-x1)/((double)xRes);
double dAddy=(y2-y1)/((double)yRes);
Byte[] matrix=new Byte[yRes*xRes];
for(int y=0;y<yRes;y++)
{
x2=x1;
for(int x=0;x<xRes;x++)
{
matrix[xRes*y+x]=CalculatePoint(x1,y1);
x1+=dAddx;

}
y1+=dAddy;
x1=x2;

}
FileStream fs=new FileStream(filename, FileMode.Create, FileAccess.Write);
fs.Write(matrix,0,matrix.Length);
fs.Close();

}
}

B. THE SAVE MEMORY ASPECT
public class SaveMemory:Aspect
{
[Call(Invoke.Instead)] // connection point
public void Calculate(string filename, double x1, double y1, double x2, double y2, int xRes, int yRes)
{

// split up in lines
double dStep=(y2-y1)/((double)yRes);
for(int i=0;i<yRes;i++)
{

// call original function
Context.Invoke(filename+i.ToString(),x1,y1,x2,y1,xRes,1);
y1+=dStep;

}
// join the files together
Byte[] data=new Byte[xRes];
FileStream fsdst=new FileStream(filename, FileMode.Create, FileAccess.Write);
for(int i=0;i<yRes;i++)
{
FileStream fssrc=new FileStream(filename+i.ToString(), FileMode.Open, FileAccess.Read);
fssrc.Read(data,0,data.Length);
fssrc.Close();
fsdst.Write(data,0,data.Length);

}
fsdst.Close();

}
}

C. THE DISTRIBUTION ASPECT (EXCERPT)
public class Distribute:Aspect
{
private object[] instances;
private int workcount;

/∗ ... ∗/

// here we generate the copies from the mandelbrot component
public override void ctor(Weaver weaver, object o, object[] args)
{

// get processor count from current system
System.Int32 affinity=System.Diagnostics.Process.GetCurrentProcess().ProcessorAffinity.ToInt32();
int iInstances=0;
while(affinity!=0)
{
if((affinity & 1)!=0) iInstances++;
affinity=affinity>>1;

}
// and generate copies
instances=new Object[iInstances];
while(iInstances--!=0)
{
instances[iInstances]=weaver.CreateInstance(o,args);

}
}
// the connection point
[Call(Invoke.Instead)]
public void Calculate(string filename, double x1, double y1, double x2, double y2, int xRes, int yRes)
{

// split up calculation in threads
workcount=instances.Length;
int nyRes=yRes/workcount;
double yStep=(y2-y1)/((double)yRes);
double yRange=yStep*nyRes;
AutoResetEvent ev=new AutoResetEvent(false);
double ny1=y1;
int iNum;
for(iNum=0;iNum<instances.Length-1;iNum++)
{
double ny2=ny1+yRange;
System.Threading.ThreadPool.QueueUserWorkItem(
new WaitCallback(Distribute.InvokeWorker),
new WorkItem(// this is a container for
this, // aspect
ev, // event
instances[iNum], // mandelbrot instance
GetFilename(iNum), // temporary filename
x1, ny1, x2, ny2, // boundaries
xRes, nyRes)); // resolution

ny1=ny2+yStep;

}
System.Threading.ThreadPool.QueueUserWorkItem(
new WaitCallback(Distribute.InvokeWorker),
new WorkItem(this, ev, instances[iNum],GetFilename(iNum), x1, ny1, x2, y2, xRes, yRes-(nyRes*(instances.Length-1))));

// wait until ready
while(workcount!=0) ev.WaitOne();
// join files
FileStream fsdst=new FileStream(filename, FileMode.Create, FileAccess.Write);
for(iNum=0;iNum<instances.Length;iNum++)
Copy(GetFilename(iNum),fsdst); // copy file to filestream

fsdst.Close();
}
// callback for threadpool
public static void InvokeWorker(object para)
{

// unpack parameters from workitem and start calculation
WorkItem item=(WorkItem)para;
item.aspect.Context.InvokeOn(item.target, item.filename, item.x1, item.y1, item.x2, item.y2, item.xRes, item.yRes);
// signal ready
Interlocked.Decrement(ref item.aspect.workcount);
item.readyevent.Set();

}
}

