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Privacy Examples

Goal

Avoid disclosure of an individual’s contribution to an aggregate
result.

What does aggregated results mean?

• Average income of a neighbourhood

• Frequency of certain diseases among a population

• Correlation between coffee and tobacco consumption

Sensitive individual attributes:

• Income (Census)

• Diseases (Clinical Reports)

• Habits (Surveys)

• Location and Movement (Mobile Phones)
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May 12 2013: EE data sold to track customers?

Official Response from Ipsos:

We do not have access to any names, personal address
information, nor postcodes or phone numbers. [...]
We only ever report on aggregated groups of 50 or more
customers. [...]
We will never release any data that in any way
allows an individual to be identified.
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The Inference Problem

A tax officer requests the total revenue of the City at the Census
Bureau. May the Census Bureau release the total revenue of the
Region afterwards?[Han71]

Hardware Stores

City

Urban Region
(City + Suburbs)

A

B
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The Inference Problem

Privacy Breach

Store A may provably obtain B’s contribution to the sum:

B =
∑

Region −
∑

City − A (1)

Hardware Stores

City

Urban Region
(City + Suburbs)

A

B
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The Inference Problem

Privacy Breach

Store A may provably obtain B’s contribution to the sum:

B =
∑

Region −
∑

City − A (1)

The Inference Problem

Background knowledge of stakeholders (i.e. Store A) used to infer
more information than actually published.
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Query Restriction

Census
Officer

US Census 
Files
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Query Restriction

Disclosure 
Policy

Database Restricted 
Interface

Disclosure Policies according to [Den80]:

• Reject too small sets (minimum query set control)

• Reject too similar queries (minimum overlap control)

• Deny results which lead to a solvable system of equations
(Auditing, only theoretical due to complexity)
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Query Restriction

Example

Name Age Income p.a.
Person A 30 $40.000
Person B 35 $60.000
Person C 40 $30.000
Person D 45 $80.000

Minimum Query Set Control |Q| ≥ 3

Attack Vector

Q1 = SUM(Income|Age < 42) = $130.000 (2)

Q2 = SUM(Income|Age < 50) = $210.000 (3)

IncomeD = Q2 − Q1 = $80.000 (4)
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Query Restriction

Example

Name Age Income p.a.
Person A 30 $40.000
Person B 35 $60.000
Person C 40 $30.000
Person D 45 $80.000

Minimum Overlap Control
Attack similar to Minimum Query Set Control with more equations
to be solved.
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Partitioning (a.k.a. Microaggregation)

Raw Data

Name Age Income p.a.
Person A 30 $40.000
Person B 35 $60.000
Person C 40 $30.000
Person D 45 $80.000

Partitioned Data

Name Age Income p.a.
Person AB 30 - 39 $50.000 (±20.000)
Person CD 40 - 49 $55.000 (±25.000)

1960 US Census data available with partitions of size 1000
[Han71]
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Partitioning (a.k.a. Microaggregation)

Partitioned Data

Name Age Income p.a.
Person AB 30 - 39 $50.000 (±20.000)
Person CD 40 - 49 $55.000 (±25.000)

Consider adding Person E (Age 47, $40.000):

Attack Vector

Given: Knowledge about E’s age and the previous database

IncomeE = NewSize ∗ NewIncome − OldSize ∗ OldIncome (2)

= 3 ∗ 50.000− 2 ∗ 55.000 (3)

= 40.000 (4)

[AW89]
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Random Sampling

• Idea Pseudo-randomly select candidates for a given query

• same queries must operate on the same subset

Simplified Algorithm[Den80]

1 Define elimination probability Pe = 2−k .

2 Preprocessing: For each record ri compute a hash
hi ∈ {0, 1}k .

3 Query processing: Compute hash Hq ∈ {0, 1}k from the query.

4 Eliminate all ri where hi = Hq from query set.

Announce k, but keep hash function secret.
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Summary 1960 - 1990

Query Restriction Approach: (Inspired by manual work
performed by Census Officers in pre-DBMS age)

• Minimum Query Set Control

• Minimum Overlap Control

• Auditing (for small databases)

Query Set Approximation Approach:

• Partitioning/Microaggregation (for static Databases)

• Random Sampling
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Anonymizing Data

Removing names and adresses in a clinical report may not be
sufficient...

Diagnosis

Medication

Visit date

Date of
Birth

ZIP

Occu-
pation

Address

Name

Party
affiliation

Medical Report Voters List
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Anonymizing Data

Medical databases:
Publish data for researchers.

Example Data:

Job Gender Age Diagnosis

Engineer Male 35 Hepatitis
Engineer Male 38 Hepatitis
Lawyer Male 38 HIV
Writer Female 30 Flu
Writer Female 30 HIV
Dancer Female 30 HIV
Dancer Female 30 HIV

Quasi-Identifiers

(Job, Gender, Age) can identify the record owner given the
background knowledge. It’s a Quasi Identifier (QID).
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k-Anonymity

k-Anonymity [Agg05]: Each QID is associated with at least k
records.

Example Data: k = 3

Job Gender Age Diagnosis

Professional Male 35 - 40 Hepatitis
Professional Male 35 - 40 Hepatitis
Professional Male 35 - 40 HIV
Artist Female 30 - 34 Flu
Artist Female 30 - 34 HIV
Artist Female 30 - 34 HIV
Artist Female 30 - 34 HIV
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k-Anonymity

k-Anonymity [Agg05]: Each QID is associated with at least k
records.

Example Data: k = 3

Job Gender Age Diagnosis

Artist Female 30 - 34 Flu
Artist Female 30 - 34 HIV
Artist Female 30 - 34 HIV
Artist Female 30 - 34 HIV

Partial Disclosure

Background knowledge about female writer aged 30 yields
diagnosis HIV with 75% confidence.
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Anonymization Algorithms

Input: Parameter k and QID

Choose Generalizations with least Information Loss:

• Numbers to Ranges
• Age 34: [30− 34] preferred to [30− 39]

• Categories to Hypernyms
• Dancer : Performing Artist better than Artist

Implementations: (Optimal Solution is NP-Hard!)

• Start with original Dataset, iteratively generalize an attribute
by a small amount until k-Anonymity reached. (Or start with
most general and specialize)[SS98]

• Apply Genetic Algorithms (Start with random generalizations,
iteratively combine best-performing configurations adding
some mutations, continue until convergence)[Iye02]

Toni Mattis Differential Privacy 20 / 39
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k-Anonymity on Geospatial Data

[Qar13]

[15:57] google.com/search?q=geospatial+data

[11:20] m.facebook.com/... ?__user=1460620434

The Data sold by EE last week contained cells of at least 50
individuals [Kob13]
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k-Anonymity on Geospatial Data

[Qar13]

google.com/...

m.facebook.com/...3

4

5 6
8

10

m.facebook.com/...
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individuals [Kob13]
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l-Diversity

l-Diversity [2006]: Each QID is associated with at least l different
values for sensitive attributes.

Our Example Data is only 2-Diverse!
Increase group size achieving 3-Diversity:

Job Gender Age Diagnosis

Professional Male 35 - 40 Hepatitis
Professional Male 35 - 40 Hepatitis
Professional Male 35 - 40 HIV
Artist Female 30 - 34 Flu
Artist Female 30 - 34 HIV
Artist Female 30 - 34 HIV
Artist Female 30 - 34 HIV
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t-Closeness

t-Closeness [2007]: Distribution of sensitive values inside a group
closely resembles the overall Distribution.

t: Upper bound on Distance between distributions.

Example for categorical values:

Element Overall 10%-Closeness 5%-Closeness

Flu 90% 80 - 100% 85 - 95%
Hepatitis 5% 0 - 15% 0 - 10%
HIV 5% 0 - 15% 0 - 10%

(Numeric values use Earth Mover’s Distance)
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Other Approaches [FWCY10]

Resampling:

• Construct distribution of original data.

• Replace n% values by random values drawn from this
distribution.

Permutation:

• Select groups of some size.

• Shuffle sensitive values inside group to de-associate QID
and value.

Preserve Mean, Variance and Distribution of isolated Attributes
but heavily impact Correlation and Covariance between
Attributes.
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Census Revisited

Knowing the previous techniques: What about the Census Example
from the beginning?

Hardware Stores

City

Urban Region
(City + Suburbs)

A

B

Attack Vector

B =
∑

Region −
∑

City − A (5)
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Census Revisited

Attack Vector?

B =
∑

Region −
∑

City − A (6)

Rendering the sums ineffective for precise disclosure:

• Query Set Overlap Control: reject query

• Random Sampling: additional missing stores

• Microaggregations with size ≥3 / 3-Anonymity: aggregates
differ in 0 or 3 stores

• Resampling: A computes either the real or a random number.

• Permutation: A computes a random competitor’s revenue.
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Modern Applications
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Input Perturbation Output Perturbation
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ε-Differential Privacy

Person Attribute X Attribute Y

Participant A No No
Participant B Yes Yes
Participant C Yes Yes
Participant D Yes Yes

Attack Vector

Query COUNT (X = Y ) = COUNT (ALL) = 4 and you can infer
X ⇒ Y

Solution: Modify COUNT

Randomly add or subtract 1. Each participant can now plausibly
claim he had no influence on the result, because the answer can
also be generated by a Database not containing his
contribution.
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ε-Differential Privacy

Definition

An aggregated result y = f (D) over Database D is differentially
private if each Database D∆ differing in a single element from D
can plausibly generate the same result y .

Can we measure plausibility?

Plausibility

A result y = f (a) can be plausibly generated by a different value b
if the outcomes are equally probable:
Pr(y = f (a)) ≈ Pr(y = f (b))
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ε-Differential Privacy

Pr(y = f (a)) ≈ Pr(y = f (b)) (7)

(8)
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ε-Differential Privacy

Definition [DMNS06]

The result y of an aggregating function f satisfies
ε-Indistinguishability if for each two Databases D and D∆

differing in a single Element:

Pr(y = f (D))

Pr(y = f (D∆))
≤ eε (10)
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ε-Differential Privacy

Example:
COUNT answers...

• the truth with P = 0.5

• one less with P = 0.25

• one more with P = 0.25

Given a Database D with COUNT (D) = 4 and a Database D∆

with COUNT (D∆) = 3, making them differ in 1 element.

Pr(COUNT (D) = 4))

Pr(COUNT (D ′) = 4))
(11)

=
0.5

0.25
= 2 = e0.69 (12)
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ε-Differential Privacy

What about SUM and other queries?
Add noise proportional to the influence of a single individual:

• COUNT: 1 (+1 or -1 is fine)

• SUM: range(D) = max(d)−min(d)

• MEAN: range(D)/count(D)

Sensitivity

The Sensitivity S(f ) of a function f is defined as the maximum
change a single contribution in a Database D can cause to f (D)
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ε-Differential Privacy

Laplace Distribution

Lap(λ) : Pr [X = x ] ∝ e
−|x|
λ (13)

λ: standard deviation

0

0.1

0.2

0.3

0.4

0.5

-10 -5 0 5 10

b=1, μ=0
b=2, μ=0
b=4, μ=0

b=4, μ=-5

Theorem [DMNS06]

Answering Query f (D) with f (D) + x where x ∼ Lap(S(f )/ε)
always satisfies ε-Indistinguishability.
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Summary of Modern Developments

Data Anonymization Approach:

• k-Anonymity (Groups of k indistinguishable individuals)

• l-Diversity (Groups of l different sensitive values)

• t-Closeness (Groups reflecting overall distribution)

• Resampling / Compression (Random data reflecting the
real-world distribution)

• Permutation (deassociating individual and sensitive data)

Output Perturbation Approach:

• ε-Differential Privacy
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Challenges and Current Research Topics

How to ensure privacy concerning...

• Distributed Sources?
• Secure Multiparty-Computation

• Tracking data? (RFID, Cellphones, Credit Card usage, ...)
• Quite stable against perturbation due to high dimensionality
• Causes of combining multiple sources unforeseeable

• Genetic sequences?
• Privacy risk underestimated
• Potentially identifiable numerous generations later

• Social networks and interactions?
• Extremely stable against perturbation
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Thanks. Questions?
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