Dependable Systems

Hardware Dependability - Redundancy

Dr. Peter Tröger

Sources:

Roland Trauner, IBM Mainframe Summit, Hasso Plattner Institute, 2012
IBM zEnterprise System Technical Guide, IBM RedBooks
Some images (C) Elena Dubrova, ESDLab, Kungl Tekniska Högskolan
Redundancy (Reiteration)

- Redundancy for **error detection** and **forward error recovery**
- Redundancy types: **spatial**, **temporal**, **informational** (presentation, version)
 - Redundant not mean identical functionality, just perform the same work
- **Static redundancy** implements error mitigation
 - Fault does not show up, since it is transparently removed
 - Examples: Voting, error-correcting codes, N-modular redundancy
- **Dynamic redundancy** implements error processing
 - After fault detection, the system is reconfigured to avoid a failure
 - Examples: Back-up sparing, duplex and share, pair and spare
- **Hybrid approaches**
System-Failure Response Strategies
[Sieworek / Swarz]

System reliability

Nonredundant system

Redundant system

Fault detection

Fault tolerance

Masking redundancy

Dynamic redundancy

Reconfiguration

Retry

Online Repair
Redundancy

• Redundancy is never for free!
 • Hardware: Additional components, area, power, shielding, ...
 • Software: Development costs, maintenance costs, ...
 • Information: Extra hardware for decoding and encoding
 • Time: Faster processing (CPU) necessary to achieve same performance

• Tradeoff: Costs vs. benefit of redundancy; additional design and testing effort

• Sphere of replication [Mukherjee]
 • Identifies logical domain protected by the fault detection scheme

• Questions: For which components are faults detected? Which outputs must be compared? Which inputs must be replicated?
Sphere of Replication

- Components outside the sphere must be protected by other means
- Level of output comparison decides upon fault coverage
- Larger sphere tends to decrease the required bandwidth on input and output
- More state changing happens just inside the sphere
- Vendor might be restricted on choice of sphere size

RAID1
- Input Replication
- Output Comparison
- I/O Bus

RAID10
- Controller
- Input Replication
- Output Comparison
Masking / Static Redundancy: Voting

• **Exact voting:** Only one correct result possible

 • **Majority vote** for uneven module numbers

 • **Generalized median voting** - Select result that is the median, by iteratively removing extremes

 • **Formalized plurality voting** - Divide results in partitions, choose random member from the largest partition

• **Inexact voting:** Comparison at high level might lead to multiple correct results

 • **Non-adaptive voting** - Use allowable result discrepancy, put boundary on discrepancy minimum or maximum (e.g. 1,4 = 1,3)

 • **Adaptive voting** - Rank results based on past experience with module results

 • Compute the correct value based on „trust“ in modules from experience

 • Example: Weighted sum $R=W_1 R_1 + W_2 R_2 + W_3 R_3$ with $W_1+W_2+W_3=1$
Static Redundancy: N-Modular Redundancy

- Fault is transparently removed on detection
- **Triple-modular redundancy (TMR)**
 - 2/3 of the modules must deliver correct results
- **Generalization with N-modular redundancy (NMR)**
 - \(\frac{m+1}{N} \) of the modules must deliver correct result, with \(N=2m+1 \)
- Standard case without any redundancy is called **simplex**

\[
R_{TMR} = R_V \cdot R_{2-of-3} \\
= R_V (R_M^3 + 3R_M^2(1 - R_M))
\]
N-Modular Redundancy (with perfect voter)

\[R_{NMR} = \sum_{i=0}^{m} \binom{N}{i} (1 - R)^i R^{N-i} \]

\[\binom{n}{k} = \frac{n!}{k!(n-k)!} \]

\[R_{2-of-3} = \binom{3}{0} (1 - R)^0 R^3 + \binom{3}{1} (1 - R)^1 R^2 \]

\[R_{3-of-5} = R^3 + 3(1 - R)R^2 \]

\[R_{3-of-5} = \ldots \]
TMR Reliability

• TMR is appropriate if $R_{\text{TMR}} > R_M$ (for given t)

• TMR with perfect voter only improves system reliability when $R_M > 0.5$

• Voter needs to have $R_V > 0.9$ to reach $R_{\text{TMR}} > R_M$
Imperfect Voters

- Redundant voters
 - Module errors do not propagate
 - Voter errors propagate only by one stage
- Assumption of multi-step process, final voter still needed
Hardware Voting

• Smallest hardware solution is the 1-bit majority voter
 • $f = ab + ac + bc$
 • Delivers the bit that has the majority
 • Requires 2 gate delays and 4 gates
• Hardware voting can become expensive
 • 128 gates and 256 flip-flops for 32-bit voter
• Input must be synchronized
 • Central clock source may be single point of failure
 • Can be solved by special event latching
Dynamic Redundancy

- Reconfiguration of the system in response to an error state
 - Prevents error propagation
 - Triggered by internal fault detection in the unit, or external error detection based on the outputs

Dynamic redundancy **combines error confinement with fault detection**

- Still questions of coverage and diagnosability

- On transient errors, good modules may be deactivated
 - Typically solved by combination of dynamic redundancy with retry approach

- Typical approaches: Duplex, sparing, degradation, compensation
Duplex Systems

- Reconfigurable duplication: Have relevant modules redundant, switch on failure
- Identification on mismatch ("test")
 - Self-diagnostics procedure
 - Self-checking logic
 - Watchdog timer, e.g. for having components resetting each other (e.g. split brain)
 - Outside arbiter for signatures or black box tests
- Test interval depends on application scenario - each clock period / bus cycle / ...
- Also called **dual-modular redundancy**
- Reliability computation as with parallel / serial component diagram
Back-Up Sparing

- Combination of working module and a set of spare modules (‘replacement parts’)
- **Hot spares**: Receive input with main modules, have results immediately
- **Warm spares**: Are running, but receive input only after switching
- **Cold spares**: Need to be started before switching
Pair and Spare

- Special cases for combination of duplex (with comparator) and sparing (with switch)

Pair and spare - Multiple duplex pairs, connected as standby sparing setup

- Two replicated modules operate as duplex pair (lockstep execution), connected by comparator as voting circuit

- Same setting again as spare unit, spare units connected by switch

- On module output mismatch, comparators signal switch to perform failover

- Commercially used, e.g. Stratus XA/R Series 300
Graceful Degradation

• Performance design of the system allows continued operation with spares
 • Many commercial systems supports this, but lack automated error processing
 • Example: Operating system support for CPU off-lining, but no MCA handling

• Designed-In Resources:
 • Replaceable or bypass-able components (f.e. caches, disks, processors)
 • Support for operation with degraded performance

• Added-On Resources:
 • Redundant units used for excess capacity during normal operation
 • Still non-degraded performance on failure

• Interconnect reconfiguration: Use alternative paths in the network
 • Hardware solutions in telco industry, today replaced by software solutions
Example: Spanning Tree Protocol

• Modern implementation of interconnect reconfiguration for dynamic redundancy

• Bridges for connecting different Ethernet sub-networks

• By default no coordination, better products use the spanning tree protocol
 • Explicit removal of redundant paths (loops), while still supporting all point-to-point communication
 • Each bridge has its own MAC address, protocol based on broadcast
 • Create a tree of bridges, starting from a chosen root bridge
 • All paths start from the root bridge
 • Ports participating in redundant paths have to be switched off
 • Cost model for paths to make a choice (root distance, speed)
Example: Spanning Tree Protocol

- Determine root bridge
 - Send your ID (MAC address) to a multicast group, smallest ID wins

- Each non-root bridge determines the 'cheapest' path to the root bridge
 - This port becomes the root port (RP)

- For multiple bridges in a segment, the 'cheapest' representative is elected - designated port (DP)

- All ports that are not DP or RP are deactivated - blocked port (BP)
Rapid Spanning Tree Protocol (RSTP)

- **Alternate Port**: Blocked port to a network that can be currently reached by another bridge in a better way
 - Reduces time for re-arrangement of the tree on errors
- **Backup Port**: Blocked port to a network that can be reached by another port in a cheaper way
 - May be used in parallel, or only as update
- **Bridge Protocol Data Unit (BPDU)** is sent every other second
 - „Hello-Time“
Hybrid Approaches

- **N-modular redundancy with spares**
 - Also called **hybrid redundancy**
 - System has basic NMR configuration
 - Disagreement detector replaces modules with spares if their output is not matching the voting result
 - Reliability as long as the spare pool is not exhausted
 - Improves fault masking capability of NMR

 - Can **tolerate two faults with one spare**, while classic NMR would need 5 modules with majority voting to tolerate two faults
TMR with Spares

- Basic reliability computation based on the assumption of similar module failure rates in spares and non-spares

- At least any two of all S+3 modules must survive

Comparison TMR vs. TMR/S vs. NMR

\[#\text{Units} = 2N + 1 \]
Hybrid Approaches

- **Self-purging redundancy**
 - Active redundant modules, each can remove itself from the system if faulty
 - Basic idea: Test for agreement with the voting result, otherwise 0

- If module output does not match to system output, 0 is delivered
- Works fine with threshold voters
Hybrid Approaches

- **Sift-out modular redundancy** (N-2), no voter required
 - Pair-wise comparison of module outputs by **comparator**
 - N inputs and N-over-2 outputs
 - **Detector** uses these signals to identify the faulty module, includes also memory cells for failed modules
 - **Collector** sifts out the faulty input, based on information from detector
Hybrid Approaches

- **Triple Duplex Architecture**
 - TMR with duplex modules, used in the Shinkansen (Japanese train)
 - Fault masking with comparator, no more contribution to voting from faulty one
 - Allows tolerating another fault in the further operation, since comparator localizes again the faulty module
 - Adds again fault location capability to redundancy scheme
 - Supports also hot plugging of deactivated components
The Real World of Hardware Redundancy - Replacement Frequencies [Schroeder 2007]

760 node cluster, 2300 disks

<table>
<thead>
<tr>
<th>Component</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hard drive</td>
<td>30.6</td>
</tr>
<tr>
<td>Memory</td>
<td>28.5</td>
</tr>
<tr>
<td>Misc/Unk</td>
<td>14.4</td>
</tr>
<tr>
<td>CPU</td>
<td>12.4</td>
</tr>
<tr>
<td>PCI motherboard</td>
<td>4.9</td>
</tr>
<tr>
<td>Controller</td>
<td>2.9</td>
</tr>
<tr>
<td>QSW</td>
<td>1.7</td>
</tr>
<tr>
<td>Power supply</td>
<td>1.6</td>
</tr>
<tr>
<td>MLB</td>
<td>1.0</td>
</tr>
<tr>
<td>SCSI BP</td>
<td>0.3</td>
</tr>
</tbody>
</table>

ISP, multiple sites, 26700 disks

<table>
<thead>
<tr>
<th>Component</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power supply</td>
<td>34.8</td>
</tr>
<tr>
<td>Memory</td>
<td>20.1</td>
</tr>
<tr>
<td>Hard drive</td>
<td>18.1</td>
</tr>
<tr>
<td>Case</td>
<td>11.4</td>
</tr>
<tr>
<td>Fan</td>
<td>8.0</td>
</tr>
<tr>
<td>CPU</td>
<td>2.0</td>
</tr>
<tr>
<td>SCSI Board</td>
<td>0.6</td>
</tr>
<tr>
<td>NIC Card</td>
<td>1.2</td>
</tr>
<tr>
<td>LV Power Board</td>
<td>0.6</td>
</tr>
<tr>
<td>CPU heatsink</td>
<td>0.6</td>
</tr>
</tbody>
</table>

ISP, multiple sites, 9200 machines, 39000 disks

<table>
<thead>
<tr>
<th>Component</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hard drive</td>
<td>49.1</td>
</tr>
<tr>
<td>Motherboard</td>
<td>23.4</td>
</tr>
<tr>
<td>Power supply</td>
<td>10.1</td>
</tr>
<tr>
<td>RAID card</td>
<td>4.1</td>
</tr>
<tr>
<td>Memory</td>
<td>3.4</td>
</tr>
<tr>
<td>SCSI cable</td>
<td>2.2</td>
</tr>
<tr>
<td>Fan</td>
<td>2.2</td>
</tr>
<tr>
<td>CPU</td>
<td>2.2</td>
</tr>
<tr>
<td>CD-ROM</td>
<td>0.6</td>
</tr>
<tr>
<td>Raid Controller</td>
<td>0.6</td>
</tr>
</tbody>
</table>
IBM System z

Sources of Outages Pre z9 - Hrs/Year/Syst-

<table>
<thead>
<tr>
<th>Unscheduled Outages</th>
<th>Prior Servers</th>
<th>z9 EC</th>
<th>Z10 EC</th>
<th>z196</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Scheduled Outages</th>
<th>Prior Servers</th>
<th>z9 EC</th>
<th>Z10 EC</th>
<th>z196</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Planned Outages</th>
<th>Prior Servers</th>
<th>z9 EC</th>
<th>Z10 EC</th>
<th>z196</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Preplanning requirements</th>
<th>Prior Servers</th>
<th>z9 EC</th>
<th>Z10 EC</th>
<th>z196</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Power & Thermal Management</th>
<th>Prior Servers</th>
<th>z9 EC</th>
<th>Z10 EC</th>
<th>z196</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Temperature = Silicon Reliability Worst Enemy
Wearout = Mechanical Components Reliability Worst Enemy.
IBM System z

- Machine-Check-Handling mechanism in z/Series
 - Equipment malfunction detection
 - Permit automatic recovery
 - Error states are reported by machine-check interruption
- Data error detection through information redundancy
- Recovery from machine-detected error states
 - Error checking and correction - use circuitry redundancy
 - CPU retry - checkpoint written at instruction-based synchronization points
 - Channel-subsystem recovery - restart of I/O components
 - Unit deletion - automated degradation of malfunctioning units
zEnterprise: Processor

- Instruction fetch and execution units are replicated
- Error check at the end of the pipeline
- R-unit keeps CPU registers and processor checkpoint
- E-units have shadow copy of registers for speed improvement
- All register / cache writes are compared, instruction retry in case
 - On fault, overwrite with R unit state
- Since z6, reverted to non-lockstepping and more fault sensors
IBM System z - Processor Books

z196 Cache / Book Topology

- 4 PU’s (cores) per CP + co-processors
- SC: Storage Control
 - 96-192 MB L4 cache per SC, accessible from other MCMs
- FBC: Fabric book connectivity
- Support for dynamic book addition and repair
- 2+1 redundancy for book power supply

Multi-Chip Module (MCM)
IBM System z

z196 RAS Design of

Fully Redundant I/O Subsystem – of existing IO cage and drawers

Fully Redundant I/O Design
- SAP / CP sparing
- SAP Reassignment
- I/O Reset & Failover
- I/O Mux Reset / Failover
- Redundant I/O Adapter
- Redundant I/O interconnect
- Redundant Network Adapters
- Redundant ISC links
- Redundant Crypto processors
- I/O Switched Fabric
- Network Switched/Router Fabric
- High Availability Plugging Rules
- I/O and coupling fanout rebalancing on CBA
- Channel Initiated Retry
- High Data Integrity Infrastructure
- I/O Alternate Path
- Network Alternate Path
- Virtualization Technology
Memory Redundancy

• Redundancy of memory data for masking
• Replication / coding at different levels
• Examples

 • STAR (Self-testing and self-repairing computer, for early spacecrafts), 1971
 • COMTRAC (Computer-aided traffic control system for Shinkansen train system)
 • Stratus (Commercial fault-tolerant system) http://www.stratus.com/uptime/
 • 3B20 by AT & T (Commercial fault-tolerant system)
 • Most modern memory controllers in servers
Memory Redundancy

• Standard technology in DRAMs
 • Bit-per-byte **parity**, check on read access
 • Implemented by additional parity memory chip
 • **ECC** with Hamming codes - 7 check bits for 32 bit data words, 8 bit for 64 bit
 • Leads to 72 bit data bus between DIMM and chipset
 • Computed by memory controller on write, checked on read
 • Study by IBM: ECC memory achieves R=0.91 over three years
 • Hewlett Packard **Advanced ECC** (1996)
 • Can detect and correct single bit and double bit errors
Memory Redundancy

• IBM ChipKill
 • Originally developed for NASA Pathfinder project, now in X-Series
 • Corrects up to 4 bit errors, detects up to 8 bit errors
 • Implemented in chipset and firmware, works with standard ECC modules
 • Based on striping approach with parity checks (similar to RAID)
 • 72 bit data word is split in 18 bit chunks, distributed on 4 DIMM modules
 • 18 DRAM chips per module, one bit per chip

• HP Hot Plug RAID Memory
 • Five memory banks, cache line is striped, fifth bank for parity information
 • Corrects single bit, double bit, 4-bit, 8-bit errors; hot plugging support
Memory Redundancy

- Dell PowerEdge Servers, 2005 (taken from www.dell.com)
Memory Redundancy

- Fujitsu System Board D2786 for RX200 S5 (2010)
- Independent Channel Mode: Standard operational module, always use first slot
- Mirrored Channel Mode: Identical modules on slot A/B (CPU1) and D/E (CPU2)
IBM System z - Memory RAID

• System z10 EC memory design
 • Four Memory Controllers (MCUs) organized in two pairs, each MCU with four redundant channels
 • 16 to 48 DIMMs per book, plugged in groups of 8
 • 8 DIMMs (4 or 8 GB) per feature, 32 or 64 GB physical memory per feature
 • 64 to 384 GB physical memory per book = 64 to 384 GB for use (HSA and customer)

• z196 memory design:
 • Three MCUs, each with five channels. The fifth channel in each z196 MCU is required to implement Redundant Array of Independent Memory (RAIM)
 • Detected and corrected: Bit, lane, DRAM, DIMM, socket, and complete memory channel failures, including many types of multiple failures
IBM System z196 - Memory RAID

Layers of Memory Recovery

ECC
- Powerful 90B/64B Reed Solomon code

DRAM Failure
- Marking technology; no half sparing needed
- 2 DRAM can be marked
- Call for replacement on third DRAM

Lane Failure
- CRC with Retry
- Data – lane sparing
- CLK – RAIM with lane sparing

DIMM Failure (discrete components, VTT Reg.)
- CRC with Retry
- Data – lane sparing
- CLK – RAIM with lane sparing

DIMM Controller ASIC Failure
- RAIM Recovery

Channel Failure
- RAIM Recovery

2- Deep Cascade Using Quad High DIMMs
IBM z10 EC Memory Structure
IBM System z196 - RAIM

Level 3 Cache

MCU 0
Key Cache

MCU 1
Key Cache

MCU 2
Key Cache

DATA
CHECK
ECC
RAIM Parity

Extra column provides RAIM function
Disk Redundancy

• Typical measure is the annual failure rate (AFR) - average number of failures / year

\[AFR = \frac{1}{MTBF_{years}} = \frac{8760}{MTBF_{hours}} \]

• Can be interpreted as failure probability during a year

• MTBF = Mean time before failure, here

• Disk MTTF: On average, one failure takes place in the given disk hours

• Example: Seagate Barracuda ST3500320AS: MTTF=750000h=85.6 years
 • With thousand disks, on average every 750h (a month) some disk fails
 • Measured by the manufacturer under heavy load and physical stress

• AFR=0.012
RAID

• **Redundant Array of Independent Disks (RAID)** [Patterson et al. 1988]
 - Improve I/O performance and / or reliability by building *raid groups*
 - Replication for information reconstruction on disk failure (*degrading*)
 - Requires computational effort (dedicated controller vs. software)
 - Assumes failure independence
RAID Reliability Comparison

• Treat disk failing as Bernoulli experiment - independent events, identical probability

• Probability for k events of probability p in n runs

\[B_{n,p}(k) = p^k (1 - p)^{n-k} \binom{n}{k} \]

• Probability for a failure of a RAID 1 mirror - all disks unavailable:

\[p_{all\ fail} = \left(\frac{n}{n} \right) p_{fail}^n (1 - p_{fail})^0 = p_{fail}^n \]

• Probability for a failure of a RAID 0 strip set - any faults disk leads to failure:

\[
\begin{align*}
p_{any\ fail} &= 1 - p_{all\ work} \\
&= 1 - \left(\binom{n}{n} (1 - p_{fail})^n p_{fail}^0 \right) \\
&= 1 - (1 - p_{fail})^n
\end{align*}
\]
RAID MTTF Calculation [Patterson]

- Works for RAID levels were second outage during repair is fatal
- Core idea is that groups of data disks are protected by additional check disks
 - D - Total number of data disks
 - G - Number of data disks in a group (e.g. G=1 in RAID1)
 - C - Number of redundant check disks (parity / mirror) in a group (e.g. C=1 in RAID1)
 - \(n_G = D / G = \) number of groups, \(G + C \) : Number of disks in a group

\[
MTTF_{Group} = \frac{MTTF_{Disk}}{G + C} \cdot \frac{1}{P_{SecondFailureDuringRepair}}
\]
RAID MTTF Calculation [Patterson]

• Assuming exponential distribution, the probability for a second disk failure during the repair time can be determined by:

\[P_{\text{Second Failure}} = \frac{MTTR}{MTTF_{\text{Disk}} \cdot (G+C-1)} \]

• So:

\[
MTTF_{\text{Group}} = \frac{MTTF_{\text{Disk}}}{G+C} \cdot \left(\frac{1}{P_{\text{Second Failure During Repair}}} \right)
\]

\[
MTTF_{\text{Raid}} = \frac{MTTF_{\text{Group}}}{n_G}
\]

\[
= \frac{MTTF_{\text{Disk}}^2}{(G+C) \cdot n_G \cdot (G+C-1) \cdot MTTR}
\]
RAID 0

• **Raid 0** - Block-level striping

 • I/O performance improvement with many channels and drives

 • One controller per drive

 • Optimal stripe size depends on I/O request size, random vs. sequential I/O, concurrent vs. single-threaded I/O

 • Fine-grained striping: Good load balancing, catastrophic data loss

 • Coarse-grained striping: Good recovery for small files, worser performance

 • One option: Strip size = Single-threaded I/O size / number of disks

 • Parallel read supported, but positioning overhead for small concurrent accesses

 • No fault tolerance

\[
MTTF_{\text{Raid0}} = \frac{MTTF_{\text{Disk}}}{N}
\]

(C) Wikipedia
RAID 1

- **Raid 1** - Mirroring and duplexing
 - Duplicated I/O requests
 - Decreasing write performance, up to double read rate of single disk
 - RAID controller might allow concurrent read and write per mirrored pair
 - Highest overhead of all solutions, smallest disk determines resulting size
 - Reliability is given by probability that one disk fails and the second fails while the first is repaired

 - With D=1, G=1, C=1 and the generic formula, we get

\[
MTTF_{Raid1} = \frac{MTTF_{Disk}}{2} \cdot \frac{MTTF_{Disk}}{MTTR_{Disk}}
\]
Raid 2/3

- **Raid 2** - Byte-level striping with Hamming code-based check disk
 - No commercial implementation due to ECC storage overhead
 - Online verification and correction during read

- **Raid 3** - Byte-level striping with dedicated XOR parity disk
 - All data disks used equally, one XOR parity disk as bottleneck (C=1)
 - Bad for concurrent small accesses, good sequential performance (streaming)
 - Separate code is needed to identify a faulty disk
 - Disk failure has only small impact on throughput

- RAID failure if more than one disk fails:
 \[
 MTTF_{\text{Raid3}} = \frac{MTTF_{\text{Disk}}}{D + C} \cdot \frac{MTTF_{\text{Disk}}}{MTTR_{\text{Disk}}}.
 \]
Parity With XOR

- Self-inverse operation

- $101 \text{ XOR } 011 = 110$, $110 \text{ XOR } 011 = 101$

<table>
<thead>
<tr>
<th>Disk</th>
<th>Byte 1</th>
<th>Byte 2</th>
<th>Byte 3</th>
<th>Byte 4</th>
<th>Byte 5</th>
<th>Byte 6</th>
<th>Byte 7</th>
<th>Byte 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Parity</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Disk</th>
<th>Byte 1</th>
<th>Byte 2</th>
<th>Byte 3</th>
<th>Byte 4</th>
<th>Byte 5</th>
<th>Byte 6</th>
<th>Byte 7</th>
<th>Byte 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Parity</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Hot Spare</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
RAID 4 / 5

- **Raid 4** - Block-level striping with dedicated parity disk
 - RAID 3 vs. RAID 4: Allows concurrent block access
- **Raid 5** - Block-level striping with distributed parity
 - Balanced load as with Raid 0, better reliability
 - Bad performance for small block writing
 - Most complex controller design, difficult rebuild
 - When block in a stripe is changed, old block and parity must be read to compute new parity
 - For every changed data bit, flip parity bit

\[
MTTF_{Raid5} = \frac{MTTF_{Disk}}{N} \cdot \frac{MTTF_{Disk}}{N-1} \cdot MTTR_{Disk}
\]
RAID 6 / 01 / 10

- **Raid 6** - Block-level striping with two parity schemes
 - Extension of RAID5, can sustain multiple drive failures at the same time
 - High controller overhead to compute parities, poor write performance

- **Raid 01** - Every mirror is a Raid 0 stripe (min. 4 disks)

- **Raid 10** - Every stripe is a Raid 1 mirror (min. 4 disks)

- **RAID DP** - RAID 4 with second parity disk
 - Additional parity includes first parity + all but one of the data blocks (diagonal)
 - Can deal with two disk outages
RAID Analysis (Schmidt)

- Take the same number of disks in different constellations
 - $AFR_{Disk} = 0.029$, MTTR=8h
- RAID5 has bad reliability, but offers most effective capacity
- In comparison to RAID5, RAID10 can deal with two disk errors
- Also needs to consider different resynchronization times
 - RAID10: Only one disk needs to be copied to the spare
 - RAID5 / RAID-DP: All disks must be read to compute parity
- Use RAID01 only in 2+2 combination
RAID Analysis (TecChannel.de)

<table>
<thead>
<tr>
<th></th>
<th>RAID 0</th>
<th>RAID 1</th>
<th>RAID 10</th>
<th>RAID 3</th>
<th>RAID 4</th>
<th>RAID 5</th>
<th>RAID 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of drives</td>
<td>$n > 1$</td>
<td>$n = 2$</td>
<td>$n > 3$</td>
<td>$n > 2$</td>
<td>$n > 2$</td>
<td>$n > 2$</td>
<td>$n > 3$</td>
</tr>
<tr>
<td>Capacity overhead (%)</td>
<td>0</td>
<td>50</td>
<td>50</td>
<td>$100/n$</td>
<td>$100/n$</td>
<td>$100/n$</td>
<td>$200/n$</td>
</tr>
<tr>
<td>Parallel reads</td>
<td>n</td>
<td>2</td>
<td>$n/2$</td>
<td>$n-1$</td>
<td>$n-1$</td>
<td>$n-1$</td>
<td>$n-2$</td>
</tr>
<tr>
<td>Parallel writes</td>
<td>n</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>$n/2$</td>
<td>$n/3$</td>
</tr>
<tr>
<td>Maximum read throughput</td>
<td>n</td>
<td>2</td>
<td>$n/2$</td>
<td>$n-1$</td>
<td>$n-1$</td>
<td>$n-1$</td>
<td>$n-2$</td>
</tr>
<tr>
<td>Maximum write throughput</td>
<td>n</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>$n/2$</td>
<td>$n/3$</td>
</tr>
</tbody>
</table>
Software RAID

- Software layer above block-based device driver(s)
- Windows Desktop / Server, Mac OS X, Linux, ...

- Multiple problems
 - Computational overhead for RAID levels beside 0 and 1
 - Boot process
 - Legacy partition formats

- Driver-based RAID
 - Standard disk controller with special firmware
 - Controller covers boot stage, device driver takes over in protected mode
Disk Redundancy: Google

- Failure Trends in a Large Disk Drive Population [Pinheiro2007]
 - > 100,000 disks, SATA / PATA consumer hard disk drives, 5400 to 7200 rpm
 - 9 months of data gathering in Google data centers
 - Statistical analysis of SMART data

- Failure event: „A drive is considered to have failed if it was replaced as part of a repairs procedure."

- Prediction models based on SMART only work in 56% of the cases
Disk Redundancy: Google

- Failure rates are correlated with drive model, manufacturer and drive age
- Indication for infant mortality
- Impact from utilization (25th percentile, 50-75th percentile, 75th percentile)
 - Reversing effect in third year - „Survival of the fittest“ theory
Disk Redundancy: Google

- Temperature effects only at high end of temperature range, with old drivers
Connection Redundancy - Fibre Channel

• Fibre Channel
 • Developed for HPC, meanwhile standard in SAN technology
 • Can run on copper and fiber-optic channels, primarily SCSI transport
 • Host bus adapter (HBA), switch, disk - all connected by ports

• Multi-pathing with switched fabric (FC-SW)
 • Combination of switches as fabric supports failover and shortest route approach
 • Multi-pathing - redundant HBAs connected to multiple switches
 • Also possible to connect redundant HBAs to different (linked) fabrics

• Bonding (client) / trunking (switch): Bundle multiple connections to one logical
 • Implementations support failover between the bonding lanes
Connection Redundancy - Fibre Channel
IBM System z - Redundant I/O

- Each processor book has up to 8 dual port fanouts
 - Direct data transfer between memory and PCI/e (8 GBps) or Infiniband (6 GBps)
- Optical and copper connectivity supported
- Fanout cards are hot-pluggable, without loosing the I/O connectivity
- Air-moving devices (AMD) have N+1 redundancy for fanouts, memory and power
IBM System z - Redundant I/O

- PCI/e I/O drawer supports up to 32 I/O cards from fanouts in 4 domains
- One PCI/e switch card per domain
- Two cards provide backup path for each other (f.e. with cable failure)
- 16 cards max. per switch
IBM System z - Redundant I/O

The InfiniBand and PCIe fanouts are located in the front of each book. Each book has eight fanout slots. They are named D1 to DA, top to bottom; slots D3 and D4 are not used for fanouts. Six types of fanout cards are supported by z196. Each slot holds one of the following six fanouts:

- **/SM590000 Host Channel Adapter (HCA2-C):** This copper fanout provides connectivity to the IFB-MP card in the I/O cage and I/O drawer.
- **/SM590000 PCIe Fanout:** This copper fanout provides connectivity to the PCIe switch card in the PCIe I/O drawer.
- **/SM590000 Host Channel Adapter (HCA2-O (12xIFB)):** This optical fanout provides 12x InfiniBand coupling link connectivity up to 150 meters distance to a z196, z114, System z10 and System z9.
- **/SM590000 Host Channel Adapter (HCA2-O LR (1xIFB)):** This optical long range fanout provides 1x InfiniBand coupling link connectivity up to 10 km unrepeated distance to a z196, z114 and System z10 servers.
- **/SM590000 Host Channel Adapter (HCA3-O (12xIFB)):** This optical fanout provides 12x InfiniBand coupling link connectivity up to 150 meters distance to a z196, z114 and System z10, cannot communicate with an HCA1-O fanout on z9.
- **/SM590000 Host Channel Adapter (HCA3-O LR (1xIFB)):** This optical long range fanout provides 1x InfiniBand coupling link connectivity up to 10 km unrepeated distance to a z196, z114 and System z10 servers.

The HCA3-O LR (1xIFB) fanout comes with 4 ports and each other fanout comes with two ports.

Figure 4-10 illustrates the IFB connection from the CPC cage to an I/O cage and an I/O drawer, and the PCIe connection from the CPC cage to an PCIe I/O drawer.