INTERCONNECTION TECHNOLOGIES

Non-Uniform Memory Access Seminar
Elina Zarisheva
26.11.2014
Agenda

• Network topology
• Logical vs. physical topology
• Logical topologies
 • InfiniBand
 • Crossbar switch
• Interconnection technologies in NUMA system
 • AMD Hyper-Transport (HT)
 • Intel Quick-Path Interconnect (QPI)
 • NumaLink
Network Topology

- Computer system or network equipment are connected to each other

<table>
<thead>
<tr>
<th>Physical topologies</th>
<th>Logical topologies</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Logical topologies

- Point-to-point
- Bus
- Daisy chain
- Ring
- Star
- Mesh
- Tree
- Hybrid
- Hypercube
Point-to-point topology

- Connects two nodes directly together
- Types:
 - simplex
 - half-duplex
 - full-duplex
 + simple
 + fast
 + medium is not shared
- support only two nodes
Bus topology

• Common medium (central bus) where the rest of nodes separately connected
 + more than one node
 + costs
 - small networks
 - limitation of nodes
 - data collision
 - depended on central bus
 - security
Daisy chain topology

- Node connects one after another
 + simple
 + scalability
 - slow for the opposite end of the chain
Ring topology

• Each node has two connections: to its nearest neighbors
• Data transmission happens indirectly
• Sending and receiving data with the help of the token
• Clockwise
• Double ring
 + organized
 + no date collision
 + no server
 + easy to add components
- slow
- dependent
Star topology

- Each node connects to a central point via a point-to-point link
- Central device:
 - hub
 - switch
- Independent access
 - centralized management
 - failure of a node does not affect
 - central devise failure affect all the network
- cost
- number of nodes depends on capacity of central device
Mesh topology

- Nodes are connected directly to another node.
- Types:
 - fully-connected
 - partly-connected
 - simultaneously
 - failure of one node does not affect on the system
 - easy to modify
 - high redundancy
 - cost
 - set-up and administration is difficult
Tree (hierarchy) topology

- Star topology are connected using Bus topology
 + expansion is easy
 + easy to manage and maintain
 + error detection and correction are easy
 + failure of one segment does not affect to the system
- central bus
- maintenance becomes difficult
- scalability depends on cable
Hybrid topology

- Combines two or more topologies
- Reap their advantages
 - + scalable
 - + flexible
 - + effective
 - - complex
 - - cost
Hypercube topology

- The distance between any two nodes is at most $\log(p)$
- Each node has $\log(p)$ neighbors
 - only $\log(p)$ neighbors
 - the longest route is $\log(p)$
 - excellent connectivity
- physical network infrastructure is ignored
- building one node at a time
InfiniBand (IBA)

- High bandwidth
- Low latency
- Bi-directional
- “Shared-nothing” architecture
 - Not able to address directly
- Support for up to 64,000 addressable devices
IBA bandwidth

• 1X Link – 500MB/sec
• 4X Link – 2GB/sec
• 12X Link – 6 GB/sec
IBA System Fabric
IBA

- Used by 43% of the systems on the Top-500 list of supercomputers (Nov. 2010)
- Intel® Xeon Phi™
- Mellanox ConnectX IB
Crossbar switch (Integrity Superdome 2)
INTERCONNECTION TECHNOLOGIES IN NUMA
Non-Uniform Memory Access

Node

Interconnect

Node

Node

Node

CPU

CPU

CPU

CPU

Memory controller

26.11.2014 | NUMA Seminar | Elina Zarisheva
Interconnectors
NUMA Interconnectors

- AMD Hyper-Transport (HT)
- Intel Quick-Path Interconnect (QPI)
- NumaLink
AMD Hyper-Transport (HT)

- High bandwidth
- Low latency
- Bi-directionally
- Multiple configuration
 - Daisy chain
 - Star
 - Mesh
- HyperTransport 3.10
AMD Hyper-Transport (HT)

- Minimal chain: two nodes
- Maximal chain: 32 nodes
- Up to 3.2 GB/sec over 8-bit I/O link
- Up to 12.8 GB/sec over 16-bit I/O link
- Up to 25.6 GB/sec over 32-bit I/O link
HT Implementation
AMD Hyper-Transport (HT)

- Opteron
- Athlon 64
- Phenom
Intel Quick-Path Interconnect (QPI)

- High bandwidth
- Low latency
- Bi-directional
- Up to 25.6 GB/sec per link
- High scalable
QPI Physical Layer

- Two 20-lane point-to-point data links
- Full duplex with a separate clock pair in each direction
- 42 signals
- Total number of pins is 84
- 20 data lanes are divided onto four "quadrants" of 5 lanes each
Intel Quick-Path Interconnect (QPI)
Intel Quick-Path Interconnect (QPI)

- Xeon
- Core i7
- Itanium
SGI Numalink

- High bandwidth
- Low latency
- Bi-directional
- Connected into the memory infrastructure of the system
- Reduce one-way request to memory
- Numalink3 3.2 GB/sec
- Numalink4 6.4 GB/sec
- Different topology
- Max 2048 nodes
SGI Numalink. Tree configuration
SGI UV 2000. Hypercube configuration

Note: The red lines are external cables that connect the two backplanes. The black lines are ful links on the backplane.
SGI Numalink. Hypercube configuration
SGI Numalink

• Altix servers and supercomputers
Questions?