
Fredrik Teschke, Lukas Pirl seminar on NUMA, Hasso Plattner Institue, Potsdam

Linux NUMA evolution

survival of the quickest

or: related information on lwn.net, lkml.org and git.kernel.org

today Linux has some understanding on how to handle non-uniform mem access
● (Tux gnawing on mem modules)
● get most out of hardware
● 10 years ago: very different picture
● what we want to show: where are we today

○ and how did we get there
○ how did Kernel evolve: making it easier for developers

we got our information from
● lwn.net: linux weekly news -> articles, comments etc.
● lkml.org: linux kernel mailing list: lots of special sub-lists

○ discussion of design/implementation of features
■ include patches (source code)

● git.kernel.org
○ find out what got merged when
○ but for really old stuff that was not possible
○ so also change logs of kernels before 2005

Fredrik Teschke, Lukas Pirl seminar on NUMA, Hasso Plattner Institue, Potsdam

Why Linux anyways?

2

Why Linux anyways?
● isn’t Windows usually supported best?
● not for typical NUMA hardware

Fredrik Teschke, Lukas Pirl seminar on NUMA, Hasso Plattner Institue, Potsdam

http://storage.pardot.com/6342/95370/lf_pub_top500report.pdf

http://upload.wikimedia.
org/wikipedia/commons/e/e1/Linus_Torvalds,_2002,

_Australian_Linux_conference.jpg

Linux market share is rising (Top 500)

UNIX Linux

3

Linux market share is rising (Top 500)
top 500 supercomputers (http://top500.org/)

first Linux system: 1998
● first basic NUMA support in Linux: 2002

from 2002: skyrocketed
● not economical to develop custom OS for every project
● no licensing cost! important if large cluster
● major vendors contribute

http://top500.org/

Fredrik Teschke, Lukas Pirl seminar on NUMA, Hasso Plattner Institue, Potsdam

Linux is popular for NUMA systems

Linux ecosystem / OSS

available/existing software

professional support

community

scalability

reliability

hardware support

modularity

4

Linux is popular for NUMA systems

hardware in supercomputing: very specific
● develop OS support prior to hardware release

applications very specific
● fine tuning required
● OSS desired

○ easily adapt
○ knowledge base exists

Fredrik Teschke, Lukas Pirl seminar on NUMA, Hasso Plattner Institue, Potsdam

kernel development process

1. design
2. implement
3. `diff -up`

4. describe changes
5. email to maintainer, CC mailing list
6. discuss

https://www.kernel.org/doc/Documentation/SubmittingPatches (20.11.2014)

5

kernel development process depicted

1. design
2. implement
3. diff -up: list changes
4. describe changes
5. email to maintainer, CC mailing list
6. discuss

dotted arrow: Kernel Doc
● design often done without involving the community
● but better in the open if at all possible
● save a lot of time redesigning things later

if there are review complaints: fix/redesign

https://www.kernel.org/doc/Documentation/development-process/2.Process

Fredrik Teschke, Lukas Pirl seminar on NUMA, Hasso Plattner Institue, Potsdam http://thread.gmane.org/gmane.linux.kernel/1392753 6

development process example

at top: see that this is a patch set

each patch contains
● description of changes
● diff

and then replies via email
● so basically: all a bunch of mails
● this just happens to be Linus favourite form of communication

Fredrik Teschke, Lukas Pirl seminar on NUMA, Hasso Plattner Institue, Potsdam

7. send pull request to Linus

http://upload.wikimedia.org/wikipedia/commons/e/e1/Linus_Torvalds,_2002,_Australian_Linux_conference.jpg

…mostly

step 7: send pull request to Linus … mostly

Kernel Doc
● 2.6.38 kernel: only 1.3% patches were directly chosen by Linus
● but top-level maintainers ask Linus to pull the patches they selected

getting patches into kernel depends on finding the right maintainer
● sending patches directly to Linus is not normally the right way to go

chain of trust
● subsystem maintainer may trust others
● from whom he pulls changes into his tree

https://www.kernel.org/doc/Documentation/development-process/2.Process
https://www.kernel.org/doc/Documentation/development-process/2.Process

Fredrik Teschke, Lukas Pirl seminar on NUMA, Hasso Plattner Institue, Potsdam

kernel development process

some other facts
major release: every 2–3 months

2-week merge window at beginning of cycle

linux-next tree as staging area

git since 2005

linux-kernel mailing list: 700 mails/day

https://www.kernel.org/doc/Documentation/development-process/2.Process, http://www.linuxfoundation.org/sites/main/files/publications/whowriteslinux.pdf

8

some other facts
● major release: every 2–3 months
● 2-week merge window at beginning of cycle
● linux-next tree as staging area
● git since 2005

○ before that: patch from email was applied manually
○ made it difficult to stay up to date for developers
○ and for us: a lot harder to track what got patched into mainstream

kernel
● linux-kernel mailing list: 700 mails/day

Fredrik Teschke, Lukas Pirl seminar on NUMA, Hasso Plattner Institue, Potsdam

kernel development process

There is [...] a somewhat involved (if somewhat informal)
process designed to ensure that each patch is reviewed for
quality and that each patch implements a change which is
desirable to have in the mainline.

This process can happen quickly for minor fixes, or, in the
case of large and controversial changes, go on for years.

https://www.kernel.org/doc/Documentation/development-process/2.Process

“
9

paragraph taken from Kernel documentation on dev process

● There is [...] a somewhat involved (if somewhat informal) process
● designed to ensure that each patch is reviewed for quality
● and that each patch implements a change which is desirable to have in the

mainline.
● This process can happen quickly for minor fixes,
● or, in the case of large and controversial changes, go on for years.

recent NUMA efforts: lots of discussion

Fredrik Teschke, Lukas Pirl seminar on NUMA, Hasso Plattner Institue, Potsdam

people

early days

Paul McKenney (IBM)

nowadays

Peter Zijlstra
redhat, now Intel: sched

Mel Gorman
IBM, now Suse: memory

Rik van Riel
redhat: mm/sched/virt

10

people

short look at kernel hackers working on NUMA
● there are many more, just the most important

early days: Paul McKenny (IBM)
● beginning of last decade

nowadays
● Peter Zijlstra

○ redhat, Intel sched
● Mel Gorman

○ IBM, Suse mm
● Rik van Riel

○ redhat mm/sched/virt

finding pictures quite difficult - just regular guys

work on kernel full-time
● for companies providing linux distributions

also listed: parts of kernel the devs focus on

● mm: memory management
● sched: scheduling

can see two core areas
● scheduling: which thread runs when and where
● and mem mgmt: where is mem allocated, paging
● both relevant for NUMA

Fredrik Teschke, Lukas Pirl seminar on NUMA, Hasso Plattner Institue, Potsdam

recap: NUMA hardware

11

now recap of some areas

first: NUMA hardware
this slide: very basic - you probably know it by heart

left: UMA

right: NUMA
● multiple memory controllers
● access times may differ (non-uniform)
● direct consequence: several interconnects

Fredrik Teschke, Lukas Pirl seminar on NUMA, Hasso Plattner Institue, Potsdam

caution: terminology in the community

node NUMA node

task scheduling entity (process/thread)

12

caution: terminology in the community

Linux does some things different than others
● this influences terminology

node: as in NUMA node
highlighted area: one node
!= node (computer) in cluster
may have several processors

now three terms you have to be very careful with
● task, process and thread
● in Linux world: task is not a work package

○ instead: scheduling entity
● that used to mean: task == process

○ then threads came along
● Linux is different: processes and threads are pretty much the same

○ threads are just configured to share resources
○ pthreads_create() -> new task spawned via clone()

we’ll just talk about tasks
● means both processes and threads

http://www.makelinux.net/books/lkd2/ch03lev1sec3
https://en.wikipedia.org/wiki/Native_POSIX_Thread_Library

man pthreads
Both of these are so-called 1:1 implementations,
meaning that each thread maps to a kernel scheduling entity.
Both threading implementations employ the Linux clone(2) system call.

http://www.makelinux.net/books/lkd2/ch03lev1sec3
http://www.makelinux.net/books/lkd2/ch03lev1sec3
https://en.wikipedia.org/wiki/Native_POSIX_Thread_Library
https://en.wikipedia.org/wiki/Native_POSIX_Thread_Library
http://man7.org/linux/man-pages/man7/pthreads.7.html
http://man7.org/linux/man-pages/man7/pthreads.7.html

Fredrik Teschke, Lukas Pirl seminar on NUMA, Hasso Plattner Institue, Potsdam

recap: scheduling goals

fairness CPU share adequate for tasks’ priority

load no idle times when there is work

throughput maximize tasks/time

latency until first response/completion

http://en.wikipedia.org/wiki/Scheduling_%28computing%29

13

recap: scheduling goals

● fairness
○ each process gets its fair share
○ no process can suffer indefinite postponement
○ equal time != fair (safety control and payroll at a nuclear plant)

● load
○ no idle times when there is work

● throughput
○ maximize tasks/time

● latency
○ time until first response/completion

Fredrik Teschke, Lukas Pirl seminar on NUMA, Hasso Plattner Institue, Potsdam

recap: the problem

observe scheduling goals
even in complex NUMA topology

approaches
keep task close to memory (scheduling vs. memory mgmt)
keep related tasks close to each other
avoid congestion of memory controllers/interconnects

keep in mind
overhead
short- vs. long-running tasks
shared memory (global, groups)

http://lwn.net/Articles/254445/

?

14

recap: the problem

when talking about NUMA
● still observe scheduling goals
● e.g. in supercomputing: high throughput

in other presentations: already heard about possible approaches
● preserve memory locality: keep task close

○ because takes longer to access remote memory
○ two ways to do this: scheduling (task placement) vs. mm

● keep related tasks close: if they share memory
● avoid congestion of mem controllers, interconnects

○ that would then be bottleneck for application

few things you should keep in mind
● overhead: if we want to make more complex decisions

○ have to arrive there somehow: probably also gathering data /
calculating heuristics

○ scheduling invoked very frequently: is it worth the overhead?
● short vs. long-running tasks

○ applications where NUMA makes sense normally don’t run for 50ms

○ short-running task: probably not worth rescheduling to different node
■ also not worth overhead gathering statistics, and making

decisions
○ empirical observation that we found in multiple places

● shared memory
○ tasks not always isolated
○ share memory: global level (C lib) / task groups aka threads
○ latter ideally placed on same node

Fredrik Teschke, Lukas Pirl seminar on NUMA, Hasso Plattner Institue, Potsdam

kernel development and academic science

academic research seldomly referenced
almost never

but there are theoretical considerations

mailing list discussions

the developers’ experience

15

kernel development and academic science

how do the two mix?

no references to academic work
mails
discussions
articles

instead: mailing list discussions serve as theoretical considerations
● we know such work exists (see Fabian Eckert’s presentation)

Fredrik Teschke, Lukas Pirl seminar on NUMA, Hasso Plattner Institue, Potsdam

related academic work

DINO
A Case for NUMA-aware Contention Management on Multicore System, Blagodurov, 2001

main concern: NUMA-agnostic task migrations
far more serious than remote access latency

mechanisms
scheduling: thread placement
memory migration: only move subset

✔ source published

✘ never announced on mailing list

esp. no patch sent

https://www.cs.sfu.ca/~fedorova/papers/usenix-numa.pdf

16

2001

DINO
avoid NUMA-agnostic migrations
thread placement

scheduling: predefined thread classes
based on cache misses / time
keep classes on one node

memory migration
migrate a fixed number K of pages
different strategies (pattern detection etc.)
empirically determined K which seems optimal

migrate memory too often
interconnect stress

migrate memory not often enough
memory controller stress

Fredrik Teschke, Lukas Pirl seminar on NUMA, Hasso Plattner Institue, Potsdam

related academic work

Carrefour
Traffic Management: A Holistic Approach to Memory Placement on NUMA Systems, Dashti, 2013

main concern: congestion on memory controllers and interconnects
not remote access costs per se

mechanisms
page co-location, interleaving, replication
thread clustering

✔ source published

✔ announced on mailing list

✘ no patch attached

https://www.cs.sfu.ca/~fedorova/papers/asplos284-dashti.pdf

Traffic Imbalance

17

some overlap in authors
same basic assumption: remote access cost not the problem

2013 -> worked on Kernel 3.6 (released end of 2012)

main concern: congestion of mem controller / interconnect

mechanisms: page co-location, interleaving, replication
thread clustering

“So even without improving locality (we even reduce it for PCA), we are able to
substantially improve performance”

Fredrik Teschke, Lukas Pirl seminar on NUMA, Hasso Plattner Institue, Potsdam

kernel development and academic science

learning

no patch → no attention

stop writing papers, hack!
if you want to contribute to the Linux kernel

18

● if no patch submitted to kernel mailing list
● chances of receiving attention are low

○ again: formal requirements are very high
■ plain-text only
■ no attachments
■ only include text you are specifically replying to
■ patches directly pasted into an email

○ ignorance is high if violated

Fredrik Teschke, Lukas Pirl seminar on NUMA, Hasso Plattner Institue, Potsdam

topology API
2.5.40

autonuma

sched/numa

numa/core

basic sched
support

3.13

pseudo-
interleaving

3.15
libnuma,

scheduling domains
2.6.7

complex
topologies

NUMA aware sched
extensions

2.5.59

balancenuma
3.8

2002 20142004 2006 20122008 2010

19

● 2002 → today
● gap 2006 – 2011
● dating of changes

○ where available: kernel release dates
○ otherwise: date of main article referring to patch set

● kernel version: contains merged code
○ = above timeline

● below the timeline = not merged into mainstream

Fredrik Teschke, Lukas Pirl seminar on NUMA, Hasso Plattner Institue, Potsdam

<= 2.5.40 (<=2002)

no understanding of nodes

unaware of memory locations/latencies
no memory migration between nodes

no affinity
processing, memory allocations

imagine…

20

● no understanding of nodes

● unaware of memory locations/latencies
○ no memory migration between nodes

● no affinity
○ processing, memory allocations

⇒

● performance of application may vary
○ system load

■ where is the process scheduled
○ may be all allocations remote
○ …

● basically, everything can happen!
● if system ends up unbalanced, no chance to fix this

Fredrik Teschke, Lukas Pirl seminar on NUMA, Hasso Plattner Institue, Potsdam

2.5.40 Oct 2002 topology API
rudimentary “discovery” of topology

obtained from firmware

supposed to map to any kind of system

elements

processor (physical)

memory block

node

node: container for any elements
not necessarily 1-1 mapping to hardware

but: no data on interconnects

http://lse.sourceforge.net/numa/topology_api/in-kernel/

21

● rudimentary “discovery” of topology
○ by McKenney, IBM
○ obtained from firmware
○ supposed to map to any kind of system
○ elements

■ processor (physical)
■ memory block

● memory block: physically contiguous block of mem
■ node

● node: container for any elements
● not necessarily 1-1 mapping to hardware

● does not represent
○ attached hardware

■ NIC
■ IO controller
■ …

○ interconnects
○ how to pin process close to hardware?

■ manual?

symbol at bottom right: this was merged into the Kernel!

Fredrik Teschke, Lukas Pirl seminar on NUMA, Hasso Plattner Institue, Potsdam

2.5.40 Oct 2002 topology API

asm/topology.h

int __cpu_to_node(int cpu);

int __memblk_to_node(int memblk);

unsigned long __node_to_cpu_mask(int node);

int __parent_node(int node); # /!\ supports hierarchies

http://lse.sourceforge.net/numa/topology_api/in-kernel/

22

● brief API overview
● __cpu_to_node(int cpu);

○ returns node the CPU belongs to
● __memblk_to_node(int memblk);

○ returns node the memory belongs to
● __node_to_cpu_mask(int node);

○ useful for pinning/affinity
● __parent_node(int node);

○ supports hierarchies!
● no distances/latencies

Fredrik Teschke, Lukas Pirl seminar on NUMA, Hasso Plattner Institue, Potsdam

now you – as a developer – can

1. manually discover nodes

and their CPUs/RAM

2. manually pin tasks to CPUs

23

● manually discover nodes and their CPUs/RAM
○ derive placement approach

● manually pin tasks to CPUs
○ provoke less migrations over nodes

Fredrik Teschke, Lukas Pirl seminar on NUMA, Hasso Plattner Institue, Potsdam

2.5.59 Jan 2003

scheduler pools CPUs by node
int __cpu_to_node(int cpu);

assigns static home node per task
run & allocate memory here

initial load balancing
node with minimum number of tasks

policies: same node / new node if own memory mgmt. / always new node

NUMA-aware scheduling

http://home.arcor.de/efocht/sched/

keep task

& mem on same node

24

● scheduler pools CPUs by node
○ 1st time active consideration of nodes
○ __cpu_to_node(int cpu);

● assigns static home node per task
○ run & allocate memory here

● initial load balancing
○ node with minimum number of tasks
○ policies

■ same node
■ new node if own memory mgmt.
■ always new node

● system might get unbalanced over time

Fredrik Teschke, Lukas Pirl seminar on NUMA, Hasso Plattner Institue, Potsdam

dynamic load balancing

invoked frequently per CPU

idle CPUs: every tick

loaded CPUs: every 200ms

⇒ “multi-level balance”:

1. inside node
2. across nodes

2.5.59 Jan 2003

L = local_node();

regular load balancing as for multicore

(O(1) scheduler):

balance_node(L);

N = most_loaded_node();

C = most_loaded_cpu(N);

if load(L) <= system_load()

steal_tasks_from_cpu(C);

NUMA-aware scheduling

http://home.arcor.de/efocht/sched/

25

dynamic load balancing

● invoked frequently per CPU
○ idle CPUs: every tick
○ loaded CPUs: every 200ms

⇒ “multi-level balance”:
1. inside node
2. across nodes

Fredrik Teschke, Lukas Pirl seminar on NUMA, Hasso Plattner Institue, Potsdam

now you – as a developer – can

lean back and trust the kernel

(but you should tune manually
for long-running tasks)

26

● compute load probably balanced well

● still, main problem:
○ memory spreads out

■ CPU affinity might help
○ “no return”

Fredrik Teschke, Lukas Pirl seminar on NUMA, Hasso Plattner Institue, Potsdam

2.6.7 Jun 2004 libnuma

new kernel API
set memory policy for process/memory area

BIND
PREFERRED # prefers a specific node
DEFAULT # prefers current node
INTERLEAVE

http://lwn.net/Articles/67005/

27

libnuma
● by Andi Kleen (Suse)
● syscalls
● library
● command-line utility

● mem alloc policies
○ BIND

■ set specific node
○ PREFERRED

■ prefers a specific node
○ DEFAULT

■ prefers current node
○ INTERLEAVE

■ only on nodes with decent-sized memory

● home node == “preferred”

● adds flexibility

Fredrik Teschke, Lukas Pirl seminar on NUMA, Hasso Plattner Institue, Potsdam

2.6.7 Jun 2004 scheduling domains

put CPUs in hierarchy
task migration cost not a constant

scheduling policy
HT, core, CPU, node

generalized approach
traverse group hierarchy bottom → top
at each level: balance groups?

domain policy influences decision
prefer balancing at lower level

http://lwn.net/Articles/80911/

Node

Physical CPU

CPU0 CPU1

Physical CPU

CPU2 CPU3

Node Node Node

minimize cost

of moving task (& mem)

28

● levels
○ hyperthreading

■ share all caches
○ cores have own caches
○ node: own memory

● balancing intervals
○ HT CPU: every 1-2ms

■ even small differences
○ physical CPU: less often

■ rarely if whole system busy
■ process loses cache affinity after few ms

○ node: rarely
■ longer cache affinity

● enhanced scheduling approach
○ traverse hierarchy bottom → top
○ at each level: balance groups?
○ domain policy influences decision
○ prefer balancing at lower level

Fredrik Teschke, Lukas Pirl seminar on NUMA, Hasso Plattner Institue, Potsdam

2.6.?? node distance

unclear when introduced exactly

obtained from ACPI 2.0
System Locality Information Table

node node

node node

1

2

29

● distance between nodes obtainable from ACPI
○ SLIT - System Locality Information Table

● apparently not used for node balancing
○ à la “if another node required, take a closer one”
○ why?

■ track access patterns better?
● DINO, Carrefour

■ highly app-specific?
● assumption same parent == same data might be wrong

○ ex. Linux’ “init” process
○ even though: knowing the distance is not enough

Fredrik Teschke, Lukas Pirl seminar on NUMA, Hasso Plattner Institue, Potsdam

knowing the distance is not enough…

node

node node

node

node

node

30

● app needs threads on two nodes
○ (concurrency > CPUs/node)

Fredrik Teschke, Lukas Pirl seminar on NUMA, Hasso Plattner Institue, Potsdam

knowing the distance is not enough…

node

node node

node

node

node

31

● another app needs 4 nodes
● scheduled on idle nodes

● bad: 4-node load separated by 2-node load
● swap 2 to relaxe interconnects

Fredrik Teschke, Lukas Pirl seminar on NUMA, Hasso Plattner Institue, Potsdam

knowing the distance is not enough…

node

node node

node

node

node

32

● resulting, better placement

⇒

● placement complex
○ esp. for not fully connected

● a lot of work ahead

Fredrik Teschke, Lukas Pirl seminar on NUMA, Hasso Plattner Institue, Potsdam

now you – as a developer – can

lean back and trust the kernel

(but still… think about the desired
memory allocation policy and set
it manually)

33

● memory allocation policies should be set
○ for long-running
○ allocation-intense tasks

Fredrik Teschke, Lukas Pirl seminar on NUMA, Hasso Plattner Institue, Potsdam

autonuma

sched/numa

numa/core

basic sched
support

3.13

pseudo-
interleaving

3.15

libnuma
2.6.7

NUMA aware sched
extensions

2.5.59

topology API
2.5.40

complex
topologies

balancenuma
3.8

?
2002 20142004 2006 20122008 2010

34

timeline: gap of 7 years

groundwork is laid
● API calls to read topology
● memory policies: NUMA-aware allocation
● scheduler knows balancing between NUMA nodes is more expensive

○ will try to avoid that

sounds good?
● apparently thats what most people thought
● 7 year gap
● but as we will see: still plenty that is missing

and continue in 2012
sched/numa

Fredrik Teschke, Lukas Pirl seminar on NUMA, Hasso Plattner Institue, Potsdam

a typical long-running computation…

mem

node

mem

node

35

a typical long-running computation…

process starts main controlling thread

Fredrik Teschke, Lukas Pirl seminar on NUMA, Hasso Plattner Institue, Potsdam

a typical long-running computation…

mem

node

mem

node

36

process loads its data for computation

allocations done where it runs (DEFAULT)

Fredrik Teschke, Lukas Pirl seminar on NUMA, Hasso Plattner Institue, Potsdam

a typical long-running computation…

mem

node

mem

node

37

process starts worker threads

due to load: some scheduled on other node

Fredrik Teschke, Lukas Pirl seminar on NUMA, Hasso Plattner Institue, Potsdam

a typical long-running computation…

mem mem

nodenode

38

lets say some workers finish early

e.g. input sanitizers: finished cleaning up input

what happens: spread out after all

unnecessary load on interconnects

Fredrik Teschke, Lukas Pirl seminar on NUMA, Hasso Plattner Institue, Potsdam

a typical long-running computation…

mem

node

mem

node ?
39

what possibilities do we have?

remember basic approaches: mm vs. sched

so we could migrate the memory

Fredrik Teschke, Lukas Pirl seminar on NUMA, Hasso Plattner Institue, Potsdam

a typical long-running computation…

mem

node

mem

node ?
40

or reschedule the threads

Fredrik Teschke, Lukas Pirl seminar on NUMA, Hasso Plattner Institue, Potsdam

a typical long-running computation…

mem

node

mem

node ?
41

or maybe do a combination of both

Fredrik Teschke, Lukas Pirl seminar on NUMA, Hasso Plattner Institue, Potsdam

sched/numa Feb 2012

tasks scheduled on varying nodes

but

memory allocated where task runs

⇒ memory spreads over nodes
esp. for long-running, memory-intense tasks

the challenge

http://lwn.net/Articles/486858/

42

sched/numa Feb 2012
the challenge

this was just one scenario
but represents what may happen: memory spread out over nodes

especially if tasks run for long time
and are memory intense

Fredrik Teschke, Lukas Pirl seminar on NUMA, Hasso Plattner Institue, Potsdam

sched/numa Feb 2012

new lazy page migration memory policy
migrate on page fault

unmap pages from process’ page table upon process migration

complete migration can be requested

patch #1

http://lwn.net/Articles/486858/

mem follows task

43

sched/numa Feb 2012

first possibility: migrating memory
● tackles two questions

○ when
○ how to do that efficiently

when: on page fault
● page still in page table
● but marked as not present (concept we will see again later)
● this bit is set:

○ when task is migrated to different node
○ or when task explicitly requests migration of all its memory

how to do it efficiently
● so page is only migrated to node when requested

○ by fault handler
● this spreads load out over time

○ e.g. no dedicated kernel thread that does batch-migrations
● and only migrates pages that are actually used

effectively: mem follows task

Fredrik Teschke, Lukas Pirl seminar on NUMA, Hasso Plattner Institue, Potsdam

sched/numa Feb 2012

load imbalance might change home node
ex: a lot non-local allocations for a tasks

expensive: only tasks running >=1s

lazy migration to new home node

patch #2

http://lwn.net/Articles/486858/

task follows mem

44

that was mm

now scheduling part
● so far: static home node
● scheduler tried to keep task there (and allocate mem there)

but as seen: situation may change
● e.g. lots of remote memory
● then assign new home node for task
● and request lazy migration for mem on other nodes

this is the task follows memory part

Fredrik Teschke, Lukas Pirl seminar on NUMA, Hasso Plattner Institue, Potsdam

sched/numa Feb 2012

define NUMA groups
new system call

share home node

define memory per NUMA group
bind memory to NUMA group

set allocation policy

patch #3

http://lwn.net/Articles/486858/tasks w/ shared

mem on same node

45

also something novel

NUMA groups
● declar group of tasks as NUMA group
● via system call

effect
● they share the same home ndoe
● if one is migrated, all are

you can actually bind memory to the group

what is this good for?
● tasks w/ shared mem (e.g. threads) run on one node (hopefully)

Fredrik Teschke, Lukas Pirl seminar on NUMA, Hasso Plattner Institue, Potsdam

autonuma Mar 2012

things will spread out (Andrea Arcangeli)

clean up afterwards
sched: migrate task?
mm: migrate page?

how to decide?
maintain statistics using page faults
per-task counters: pages per node
per-page field: last node to access

http://lwn.net/Articles/488709/

46

autonuma Mar 2012

new player: Andrea Arcangeli
● also redhat employee at the time

things spread out anyways
● remember example just now
● e.g. tasks that do not fit on one node
● basically says: forget the home node/ preferred node

different approach: clean up
● two possibilities: sched vs mm
● migrate task or page

decide based on page access statistics
● gather using page faults

○ k-thread periodically marks anonymous pages as “not present”
○ upon access: fault generated
○ in fault handler update statistics
○ for each task record: how many pages on each node
○ for each page record: what was last node to access it

Fredrik Teschke, Lukas Pirl seminar on NUMA, Hasso Plattner Institue, Potsdam

autonuma Mar 2012

things will spread out

clean up afterwards
sched: migrate task?
mm: migrate page?

how to decide?
maintain statistics using page faults
per-task counters: pages per node
per-page field: last node to access

http://lwn.net/Articles/488709/

mostly remote page accesses?
better suited than tasks running on that node?

2 consecutive accesses
from same remote node?

memmem

nodenode

⚡

⚡
⚡

47

migrate task?
● if mostly remote page accesses
● and other tasks currently running on that node are not that well suited

migrate memory?
● b/c memory may be spread out: can only migrate task to largest part
● heuristic: if on 2 subsequent faults -> access from same remote node

○ then add to migration queue

problems (pointed out by Peter)
● kernel worker threads used

○ to scan address space -> force page faults
○ and to migrate queued pages
○ e.g. if system slow: now direct accountability -> why is it slow?

● for-each-CPU loop in scheduler
○ in schedulers hot path
○ doesn’t scale with # CPUs

Fredrik Teschke, Lukas Pirl seminar on NUMA, Hasso Plattner Institue, Potsdam

autonuma

sched/numa

numa/core

pseudo-
interleaving

3.15

libnuma
2.6.7

complex
topologies

2002 20142004 2006 20122008 2010

topology API
2.5.40

NUMA aware sched
extensions

2.5.59

Unless you're going to listen to feedback
I give you, I'm going to completely stop
reading your patches, I don't give a rats
arse you work for the same company
anymore. You're impossible to work with.

http://lwn.net/Articles/522093/

“

basic sched
support

3.13

balancenuma
3.8

48

timeline

discussion btw Peter and Andrea two grew a bit out of hand
● Unless you're going to listen to feedback I give you,
● I'm going to completely stop reading your patches,
● I don't give a rats arse you work for the same company anymore.
● You're impossible to work with.

apart from that: short comparison of sched/numa and autonuma
● sched/numa

○ avoid separation in first place -> home node
■ move mem with task (lazy)
■ possibly change home node of task

○ dev can explicitly define NUMA group -> share home node
● autonuma

○ scleanup afterwards
○ statistics gathering via page faults

next step: combination into numa/core
● maybe redhat stepped in
● Peter tried to combine the best of both

Fredrik Teschke, Lukas Pirl seminar on NUMA, Hasso Plattner Institue, Potsdam

numa/core Oct 2012

combine existing ideas
lazy page migration (sched/numa)
page faults to track access patterns (autonuma)

modify some things
scan address space: proportional to task runtime http://article.gmane.org/gmane.linux.kernel/1392192

only if task gathered >1s runtime http://article.gmane.org/gmane.linux.kernel/1392189

add some new stuff
private vs. shared pages: analyze CPU access patterns http://article.gmane.org/gmane.linux.kernel/1392193

add last_cpu to page struct -> auto-detect NUMA groups
move memory-related tasks to same node

http://lwn.net/Articles/522093/, http://lwn.net/Articles/524535/

49

numa/core Oct 2012

combine existing ideas
● lazy page migration (sched/numa)

○ benefit: less performance impact when task is migrated
● page faults to track access patterns (autonuma)

● determine ideal placement dynamically: no static home node

modify some things
● scan address space: proportional to task runtime

● problem before: task w/ little work but lots of mem -> large impact
○ only if task gathered >1s runtime

○ ignore short-running (theory: don’t benefit from NUMA aware
placement)

add some new stuff
● identify shared pages from CPU access patterns
● add last_cpu to page struct -> auto-detect NUMA groups

○ assume task remains on CPU for some time
○ page fault: accessed by other CPU == other task?
○ instead of manually defining them as before

○ try to move memory-related tasks to same node

actually made it into linux-next
● staging tree for next kernel release

Fredrik Teschke, Lukas Pirl seminar on NUMA, Hasso Plattner Institue, Potsdam

autonuma

sched/numa

numa/core

balancenuma
3.8

basic sched
support

3.13

pseudo-
interleaving

3.15

libnuma
2.6.7

complex
topologies

2002 20142004 2006 20122008 2010

topology API
2.5.40

NUMA aware sched
extensions

2.5.59

50

timeline

while Peter and Andrea were arguing
● other devs had noticed (Mel Gorman, IBM)

while Peter worked on numa/core
● Gorman worked on balancenuma

Fredrik Teschke, Lukas Pirl seminar on NUMA, Hasso Plattner Institue, Potsdam

3.8 Feb 2013 balancenuma

objections to sched/numa and autonuma http://thread.gmane.org/gmane.linux.

kernel/1389408

add basic infrastructure
lazy page migration, tracking via page faults

with some improvements
vmstats: measure benefit of policy

baseline policy MORON (Migrate On Reference Of pte_numa Node)
in future: test different policies (e.g. rebase sched/numa and autonuma on top)

http://lwn.net/Articles/524977/, http://thread.gmane.org/gmane.linux.kernel/1392753

51

balancenuma

Mel Gorman: objections to implementation of both approaches
but also: objections to approaches themselves

● both specific solutions on how to schedule / move memory
● tested, but not widely tested on lots of NUMA hardware
● and not compared to many different approaches

his vision: compare more policies
● more of an academic approach
● first step: make it easier to build & evaluate such policies
● basic mechanisms can be shared btw policies

add basic infrastructure
● page fault mechanism
● lazy migration
● vmstats (virtual memory statistics)

○ approximate cost of policy

on top of this: implemented baseline policy MORON
● mem follows task

● migrates memory on page fault && remote access

his suggestion for going forward
● test other policies
● e.g. rebase sched/numa and autonuma onto this foundation

finally merged
● after 1 year of back and forth

pte: page table entry

sched/numa
obscures costs
hard-codes PROT_NONE as hinting fault even (should be architecture-specific
decision)
well integrated, work in context of process that benefits

autonuma
kernel threads: mark pages to capture statistics
obscures costs
some costs: in paths that sched programmers are weary of blowing up
performance tests: best performing solution.

Fredrik Teschke, Lukas Pirl seminar on NUMA, Hasso Plattner Institue, Potsdam

now you – as a kernel hacker – can

build NUMA-aware policies
scheduling
memory management
that reuse basic mechanisms (e.g. lazy page migration)

evaluate your policies

52

now you – as a kernel hacker – can

build NUMA-aware policies
● consider both

● scheduling
● memory management

● now made easier
● reuse basic mechanisms (e.g. lazy page migration)

evaluate your policies
● compare them to existing

Fredrik Teschke, Lukas Pirl seminar on NUMA, Hasso Plattner Institue, Potsdam

autonuma

sched/numa

numa/core

basic sched
support

3.13

pseudo-
interleaving

3.15

libnuma
2.6.7

complex
topologies

2002 20142004 2006 20122008 2010

topology API
2.5.40

NUMA aware sched
extensions

2.5.59

balancenuma
3.8

53

timeline

next step on top of balancenuma
● not only mem mgmt
● but also scheduling

Fredrik Teschke, Lukas Pirl seminar on NUMA, Hasso Plattner Institue, Potsdam

3.13 Jan 2014

a little bit of autonuma
detect on which node task mem lives (then task can follow mem)
⚡ may violate CPU load balancing -> move other task away

only handles special case: swapping

a dash of numa/core
identify groups (last_cpu, last_task)

and a pinch of tweaks
leave shared libraries (e.g. C) out of NUMA scheduling

would pull everything together
ignore read-only pages and shared +x pages (mostly in CPU cache anyway)

basic scheduler support

http://lwn.net/Articles/568870/scheduling: NUMA

and load balancing and groups

54

basic scheduler support

Peter started pitching in again
reuse of more existing stuff

a little bit of autonuma
● per task counters: detect where task mem lives
● problem: NUMA scheduling possibly in conflict with scheduling goal of

max. load
○ only handle special case for now: swap w/ other task that also

benefits

a dash of numa/core
● agreed that identifying groups was a good thing
● but less heuristic: remember which task accesses page

○ not enough space in page_struct for full task id
○ use bottom 8 bits: collisions possible

and a pinch of tweaks
● ignore shared libraries

○ would pull everything together
● by ignoring read-only pages and shared executable pages

○ mostly in CPU cache anyway

summary
● NUMA-aware scheduling (not just mm)
● try to uphold load balancing goal
● and auto detect NUMA groups

also in Kernel!

Fredrik Teschke, Lukas Pirl seminar on NUMA, Hasso Plattner Institue, Potsdam

3.15 Jun 2014

a new tweak
workload (e.g. group) > 1 node
so far: mem distribution between nodes random

pseudo-interleaving

http://thread.gmane.org/gmane.linux.kernel/1631332

mem

node

mem

node

55

pseudo-interleaving

also already in kernel

basically yet another tweak
● for special case: workload (e.g. group) > 1 node
● if that happens, then so far

○ mem distribution btw nodes is random

example
● begin with one task (purple)
● starts allocating mem
● among that mem also some that will be shared by other task (green)

○ e.g. threads in same process
● maybe at some point mem spills over into other node
● then other task that shares some of the mem comes (orange)

○ scheduled on other node (e.g. b/c of load)
● starts allocating memory
● now not ideal distribution
●

goals

keep private mem local to each thread
avoid excessive NUMA migration of pages
distribute shared mem across nodes (max. mem bandwidth)

how-to
identify active nodes for workload

balance mem lazily btw these

Fredrik Teschke, Lukas Pirl seminar on NUMA, Hasso Plattner Institue, Potsdam

3.15 Jun 2014

a new tweak
workload (e.g. group) > 1 node
so far: mem distribution between nodes random

pseudo-interleaving

http://thread.gmane.org/gmane.linux.kernel/1631332

mem

node

mem

node

56

what would really be ideal
● private pages local for each task
● shared pages distributed evenly

○ reduce congestion of interconnect

Fredrik Teschke, Lukas Pirl seminar on NUMA, Hasso Plattner Institue, Potsdam

3.15 Jun 2014

goals
keep private mem local to each task
avoid excessive NUMA migration of pages
distribute shared mem across nodes (max. mem bandwidth)

how-to
identify active nodes for workload
balance shared memory lazily between these

pseudo-interleaving

http://thread.gmane.org/gmane.linux.kernel/1631332

57

these are exactly the goals of this patch
● keep private mem local to each thread
● avoid excessive NUMA migration of pages (back and forth)
● distribute shared mem across nodes (max. mem bandwidth)

how to achieve that?
● identify active nodes for workload
● balance shared mem lazily btw these

Fredrik Teschke, Lukas Pirl seminar on NUMA, Hasso Plattner Institue, Potsdam

now you – as a developer – can

lean further back
kernel will try to optimize
also for NUMA groups (e.g. threads)
and even if workload > 1 node

...or you can still manually tune

58

now you – as a developer – can

lean further back
● kernel will try to optimize
● also for NUMA groups (e.g. threads)
● and even if workload > 1 node

...or you can still manually tune

Fredrik Teschke, Lukas Pirl seminar on NUMA, Hasso Plattner Institue, Potsdam

2014

future work

59

Fredrik Teschke, Lukas Pirl seminar on NUMA, Hasso Plattner Institue, Potsdam

future: complex topologies (2014)

recap scheduling domains:
HT, cores, node

What about node topologies?

http://thread.gmane.org/gmane.linux.kernel/1808344

60

scheduling domains and complex topologies
● elements in one hierarchy level (node level)

○ might not be equally expensive to migrate to

Fredrik Teschke, Lukas Pirl seminar on NUMA, Hasso Plattner Institue, Potsdam

future: complex topologies (2014)

mesh topology
connection might through other nodes

hops between two nodes > 2

⇔

∃ intermediate node

http://thread.gmane.org/gmane.linux.kernel/1808344

node node

node node

61

mesh topology
● topology does not really matter

○ there is always a neighbor with distance = 1
● distance straight forward
● ⇒ no new domain hierarchy

Fredrik Teschke, Lukas Pirl seminar on NUMA, Hasso Plattner Institue, Potsdam

backplane topology

new scheduling domains

nodes in same group

⇔

both have same number hops to all other nodes

http://thread.gmane.org/gmane.linux.kernel/1808344

backplane
controller

node

backplane
controller

backplane
controller

b
a
c
k
p
l
a
n
e

node

node

node

future: complex topologies (2014)

node

node 62

ex: backplane toplogy

● controllers: nodes w/o memory
○ cannot run tasks

● problems
○ controllers add 1 to distance
○ controllers in same domain as nodes

■ but cannot run tasks
● distances for all combinations of nodes

○ new scheduling domain
■ groups of nodes
■ nodes with same distance to all other nodes

Fredrik Teschke, Lukas Pirl seminar on NUMA, Hasso Plattner Institue, Potsdam

outlook

feedback needed!
performance, problems, enhancements, …

Big chance! Devs seldomly say “What could be better? I’ll implement it!”

http://lwn.net/Articles/591995/

notes from the Storage, Filesystem, and
Memory Management Summit 2014

63

notes from Storage, Filesystem, and Memory Management Summit 2014

● feedback needed!
○ performance, problems, enhancements, …
○ devs are willing to improve for others problems!

■ this is rare!

Fredrik Teschke, Lukas Pirl seminar on NUMA, Hasso Plattner Institue, Potsdam

outlook

4-node system close to optimal

performance drop for more nodes
page access tracking too expensive?
need more awareness of topology?

performance test highly individual
a benchmark would be an enrichment
(your chance to get famous!)

http://lwn.net/Articles/591995/

notes from the Storage, Filesystem, and
Memory Management Summit 2014

64

● 4-node system
○ close to optimal

● 4+ nodes
○ bad performance
○ page access tracking too expensive?
○ need more awareness of topology?
○ not fully meshed

● performance test highly individual
○ a benchmark needed
○ possible?
○ highly app specific

Fredrik Teschke, Lukas Pirl seminar on NUMA, Hasso Plattner Institue, Potsdam

outlook

page cache pages (IO cache) still location-unaware

good or bad?

force reclaim of memory for page cache?
page cache saves IO but swapping can eliminate benefits

introduce page aging?
unused pages swap out in favor for IO cache
useful pages stay in memory
more cross-node traffic (page cache is interleaved)

http://lwn.net/Articles/591995/

notes from the Storage, Filesystem, and
Memory Management Summit 2014

65

IO cache
● location unaware
● force free of memory for page cache

○ swapping vs. uncached IO
● page aging

○ swap out unused pages
○ page cache is interleaved

Fredrik Teschke, Lukas Pirl seminar on NUMA, Hasso Plattner Institue, Potsdam

outlook

add IO awareness
prefer nodes with corresponding adapter

group networking processes?
add awareness of which node holds NIC

“swap” to other nodes
in case of low free memory
still, swap to disk if all nodes low on free memory

http://lwn.net/Articles/591995/

notes from the Storage, Filesystem, and
Memory Management Summit 2014

node node

mem

NIC

DMA?
IO

adapter

mem

66

IO / device awareness
● group network processes
● group IO-heavy processes
● multi-level swap

1. to other nodes
2. to disk

Fredrik Teschke, Lukas Pirl seminar on NUMA, Hasso Plattner Institue, Potsdam

2014

future work - much

67

much to to
many possible ways
again:

test
feedback
develop

Fredrik Teschke, Lukas Pirl seminar on NUMA, Hasso Plattner Institue, Potsdam 68

by Tagxedo

Questions?
… or per email.

Fredrik Teschke, Lukas Pirl seminar on NUMA, Hasso Plattner Institue, Potsdam

Fredrik Teschke, Lukas Pirl seminar on NUMA, Hasso Plattner Institue, Potsdam

single → multi-processing ≈ SMP → NUMA ?

CPU

CPU

CPU CPU

CPU

node

node

node node

? node

● SMP <-> NUMA
● caches should be warm <-> memory should be close

○ HT <-> same node
○ migration costs

● largely done by kernel (from the beginning?) <-> needs manual optimization

