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■ Max Plauth

□ GPU Accelerators

□ Virtualization of
Accelerators

■ Sven Köhler

□ On-Core Accelerators
(SIMD, Crypto)

□ Programming
Models for Accelerators

■ Felix Eberhardt

□ NUMA Topologies

□ Dynamic Scale-Up/
Down

■ Lukas Wenzel

□ Computer Architecture

□ FPGA Accelerators
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A. The Parallelization Problem

□ Power wall, memory wall, Moore’s law

□ Terminology and metrics

B. Shared Memory Parallelism

□ Theory of concurrency, hardware today and in the past

□ Programming models, optimization, profiling

C. Heterogeneous Computing

□ On-Chip Accelerators (e.g. SIMD, special purpose accelerators, etc.)

□ External Accelerators (e.g. GPUs, FPGAs, etc.)

D. Shared Nothing Parallelism

□ Theory of concurrency, hardware today and in the past

□ Programming models, optimization, profiling
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This is a course about concepts, not a 
programming tutorial!

■ Weekly lectures

■ Practical assignments

■ Oral exam ~30 minutes

■ Literature list on course home page

■ Based on a course by Prof. Dr. Peter 
Tröger

Course Design
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The Art of Concurrency: 
A Thread Monkey's Guide to 
Writing Parallel Applications

Clay Breshears
O'Reilly Media, Inc.

2009

http://prof.beuth-hochschule.de/troeger/


■ Lectures are given in flipped classroom style

□ 75% time: Videos delivering lecture content

□ 25% time: Online meetings for recap sessions, questions and 
discussions

■ Videos are posted every Wednesday on the website

■ Meeting links for Thursday will also appear on the website

https://osm.hpi.de/parProg/2020/

Course Design
Lectures
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■ Implementation of parallel algorithms to demonstrate the use of 
programming models discussed in the lecture

■ Presented every ~3 Weeks

■ Solved in teams of 2 persons

■ Submission to https://osm.hpi.de/submit/

■ At least 50% correct solutions enable participation in final exam

Course Design
Assignments
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Running Applications

Application

Instructions



■ First computers had fixed programs (electronic calculator)

■ von Neumann architecture (1945, for EDVAC project)

□ Instruction set for control flows stored in memory

□ Program is treated as data, which allows the exchange of code during 
runtime and self-modification

□ Introduced the von Neumann bottleneck

■ CPUs are built from logic gates, which are built from transistors

■ Multiple CPUs (SMP) were always possible, but exotic
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■ Work Harder
(clock speed)

■ Work Smarter
(optimization, caching)

■ Get Help 
(parallelization)
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Three Ways of Doing Anything Faster [Pfister]

Application

Instructions



■ „...the number of transistors that can be inexpensively placed on an integrated 
circuit is increasing exponentially, doubling approximately every two years. 
...“ (Gordon Moore, 1965)

□ Rule of exponential growth

□ Applied to many IT hardware developments

□ Sometimes misinterpreted as 
performance indication

□ Has become a self-fulfilling prophecy

□ Comes to an end within the next 5-10 years
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Moore’s Law
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Moore’s Law

[Wikimedia]



■ Gate’s law: “The speed of software halves every 18 months.”

■ Wirth’s law: “Software is getting slower more rapidly than hardware becomes 
faster.”

■ May’s law: “Software efficiency halves every 18 months, compensating 
Moore's Law.”

■ Jevons paradox: 
“Technological progress that increases the efficiency with which a resource is 
used tends to increase (rather than decrease) the rate of consumption of that 
resource.”

■ Zawinski's Law of Software Envelopment: 
“Every program attempts to expand until it can read mail. 
Those programs which cannot so expand are replaced by ones which can.” ParProg 2020 
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Moore‘s Law vs. Software
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Processor Speed Development

Transistors #
Clock Speed (Mhz)
Power (W)
Perf/Clock (ILP)

„Work harder“

„Work smarter“

[Herb Sutter, 2009]



■ Power: Energy needed per time unit

□ Power density: Watt/mm2 
→ Cooling

■ Static power: Leakage of transistors while being inactive

■ Dynamic power: Energy needed to switch a gate

■ Moore’s law: N goes up exponentially, C goes down with the size

■ The trick

□ Bringing down V reduces energy consumption, quadratically

□ Don’t use all the N for gates (e.g. caches)

□ Keeps the dynamic power increase moderate

□ We can happily increase F with N for faster computation
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A Physics Problem

Dynamic Power ~ 
Number of Transistors (N) x Capacitance (C) x 

Voltage2 (V2) x Frequency (F)
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Processor Supply Voltage
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Transistor Usage

[https://en.wikichip.org/wiki/ibm/microarchitectures/power9]
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Power Density



■ Higher temperature leads to

□ Increased transistor leakage

□ Decreased transistor speed

□ Higher failure probability

ParProg 2020 
Introduction

Chart 18

Power Density = Temperature

S. Reda. Brown U. EN2912C Fall  ‘08 3 

Challenge 1: The temperature wall 
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thermal profile during runtime 

Temperature increase: 

•  increases leakage current/power  

•  slows circuits 
•  Prevent performance increase 

•  Failure chance increases 

[source: Devgan’05] 
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Power Density
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[Kevin Skadron, 2007]
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Power Density
Power Density vs. Critical Dimension
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Power Density
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Second Problem: Leakage Increase
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■ Even if we would keep F constant

□ N continues to increase exponentially → dynamic power

□ Increasing N sums up to more leakage → static power

■ Cooling performance is constant (100-125 Celsius)

□ Static and dynamic power consumption has a limit

■ Further reducing V for compensating an additionally increased F

□ Also makes the transistors slower

□ We can’t do that endlessly, 0V is the limit

□ Strange physical effects

■ Increasing the frequency is no longer possible 
→ “Power Wall”

■ Ok, so let’s use the additional N for smarter processors
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A Physics Problem

Dynamic Power = N x C x V2 x F



■ Increasing transistor count was also used for more gate logic in 
instruction level parallelism (ILP)

□ Instruction pipelining

– Overlapped execution of serial instructions 

□ Superscalar execution

– Multiple execution units are used in parallel

□ Out-of-order execution

– Reorder instructions that have no data dependency

□ Speculative execution

– Control flow speculation, memory dependence prediction, branch 
prediction

■ Today’s processors are packed with ILP logic
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Instruction Level Parallelism



■ No longer cost-effective to dedicate 
new transistors to ILP mechanisms

■ Deeper pipelines make the 
power problem worse

■ High ILP complexity effectively 
reduces the processing 
speed for a given frequency 
(e.g. mispredictions)

■ More aggressive ILP 
technologies too risky for 
products due to unknown 
real-world workloads

■ → “ILP wall”

■ Ok, so let’s use the additional N for more caches
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The ILP Wall

[Wikipedia]
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Memory Hierarchy
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L2 Cache L2 Cache

L3 Cache
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Memory Wall



■ Sandia National Labs investigated the speedup achievable by increasing 
parallelism (ILP, multiple processors) in 2009

■ Example: Number of clerks behind a supermarket counter

□ Two clerks can serve more customers than one

□ 4 ? 8 ? 16 ? 32 ? 64 ? ... 1000 ?

■ The problem: Shared memory is ‚shared‘

□ Memory bandwidth

– Memory transfer speed is limited by the power wall

– Memory transfer size is limited by the power wall

– Putting memory into the processor is too costly

□ Bus contention

■ Another problem: Memory need kept the pace of CPU speedup

■ → “Memory wall” 
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Memory Wall
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Processor Speed Development

[Herb Sutter, 2009]
■ Clock speed curve flattened in 

2003

□ Heat

□ Power consumption

□ Leakage

■ 3-4 GHz since 2001 (!)

■ Speeding up the serial 
instruction execution through 
clock speed improvements no 
longer works

■ We stumbled into the Many-
Core Era 
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Conventional Wisdoms Replaced

Old Wisdom New Wisdom

Power is free, transistors are expensive „Power wall“

Only dynamic power counts Static leakage makes 40% of power

Multiply is slow, load-and-store is fast „Memory wall“

Instruction-level parallelism gets constantly 
better via compilers and architectures

„ILP wall“

Parallelization is not worth the effort, 
wait for the faster uniprocessor

Performance doubling might now take 5 years 
due to physical limits

Processor performance improvement
by increased clock frequency

Processor performance improvement
by increased parallelism



■ Power consumption increases with Moore‘s law,
even under constant frequencies

■ Cooling is a constant factor

□ Maximum temperature of 100-125 C

□ Hot spots make it worse

■ Next-generation processors need to use less power

□ Lower the frequencies

□ Dynamic frequencies scaling (see latest Intel products)

□ Minimize ‚power per bit of I/O‘ [Skadron 2007]

□ Better cache locality, stop moving stuff around

□ Start to use specialized co-processors and accelerators
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Power Wall 2.0
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Power Wall 2.0 = Dark Silicon

“Dark Silicon and the End of 

Multicore Scaling”

by Hadi Esmaeilzadeh, Emily 

Blem, Renée St. Amant, 

Karthikeyan Sankaralingam, 

Doug Burger



■ Hardware people

□ Number of transistors N is still increasing

□ Building larger caches no longer helps (memory wall)

□ ILP is out of options (ILP wall)

□ Voltage / power consumption is at the limit (power wall)

– Some help with dynamic scaling approaches

□ Frequency is stalled (power wall)

□ Only possible offer is to use increasing N for more cores

■ For faster software in the future ...

□ Speedup must come from the utilization of an increasing core count, 
since F is now fixed

□ Software must participate in the power wall handling, to keep F fixed

□ Software must tackle the memory wall
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The Situation



■ Work Harder
(clock speed)

■ Work Smarter
(optimization, caching)

■ Get Help 
(parallelization)
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Three Ways of Doing Anything Faster [Pfister]

Application

Instructions



■ Parallelization not only in 
computer science

□ Building construction, car 
manufacturing, large companies

■ The basic idea is easy to understand

■ Meanwhile tons of options for parallel 
processing

□ Languages, execution 
environments, patterns

■ Parallelism is a hardware property 
that must be exploited by software

□ „A parallel computer is a set of 
processors that are able to work 
cooperatively to solve a 
computational problem.“

(Foster 1995)
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Getting Help

Problem



Thank you
for your attention!


