
Parallel Programming and Heterogeneous Computing

Introduction

Max Plauth, Sven Köhler, Felix Eberhardt, Lukas Wenzel and Andreas Polze

Operating Systems and Middleware Group

■ Max Plauth

□ GPU Accelerators

□ Virtualization of
Accelerators

■ Sven Köhler

□ On-Core Accelerators
(SIMD, Crypto)

□ Programming
Models for Accelerators

■ Felix Eberhardt

□ NUMA Topologies

□ Dynamic Scale-Up/
Down

■ Lukas Wenzel

□ Computer Architecture

□ FPGA Accelerators

ParProg 2020
Introduction

Chart 2

Teaching Team (PhD Students)

A. The Parallelization Problem

□ Power wall, memory wall, Moore’s law

□ Terminology and metrics

B. Shared Memory Parallelism

□ Theory of concurrency, hardware today and in the past

□ Programming models, optimization, profiling

C. Heterogeneous Computing

□ On-Chip Accelerators (e.g. SIMD, special purpose accelerators, etc.)

□ External Accelerators (e.g. GPUs, FPGAs, etc.)

D. Shared Nothing Parallelism

□ Theory of concurrency, hardware today and in the past

□ Programming models, optimization, profiling

ParProg 2020
Introduction

Chart 3

Course Topics

This is a course about concepts, not a
programming tutorial!

■ Weekly lectures

■ Practical assignments

■ Oral exam ~30 minutes

■ Literature list on course home page

■ Based on a course by Prof. Dr. Peter
Tröger

Course Design

ParProg 2020
Introduction

Chart 4

The Art of Concurrency:
A Thread Monkey's Guide to
Writing Parallel Applications

Clay Breshears
O'Reilly Media, Inc.

2009

http://prof.beuth-hochschule.de/troeger/

■ Lectures are given in flipped classroom style

□ 75% time: Videos delivering lecture content

□ 25% time: Online meetings for recap sessions, questions and
discussions

■ Videos are posted every Wednesday on the website

■ Meeting links for Thursday will also appear on the website

https://osm.hpi.de/parProg/2020/

Course Design
Lectures

ParProg 2020
Introduction

Chart 5

■ Implementation of parallel algorithms to demonstrate the use of
programming models discussed in the lecture

■ Presented every ~3 Weeks

■ Solved in teams of 2 persons

■ Submission to https://osm.hpi.de/submit/

■ At least 50% correct solutions enable participation in final exam

Course Design
Assignments

ParProg 2020
Introduction

Chart 6

ParProg 2020
Introduction

Chart 7

Running Applications

Application

Instructions

■ First computers had fixed programs (electronic calculator)

■ von Neumann architecture (1945, for EDVAC project)

□ Instruction set for control flows stored in memory

□ Program is treated as data, which allows the exchange of code during
runtime and self-modification

□ Introduced the von Neumann bottleneck

■ CPUs are built from logic gates, which are built from transistors

■ Multiple CPUs (SMP) were always possible, but exotic

ParProg 2020
Introduction

Chart 8

Machine Model

Central Unit

Memory
Control Unit

Arithmetic Logic UnitInput

Output B
u
s

■ Work Harder
(clock speed)

■ Work Smarter
(optimization, caching)

■ Get Help
(parallelization)

ParProg 2020
Introduction

Chart 9

Three Ways of Doing Anything Faster [Pfister]

Application

Instructions

■ „...the number of transistors that can be inexpensively placed on an integrated
circuit is increasing exponentially, doubling approximately every two years.
...“ (Gordon Moore, 1965)

□ Rule of exponential growth

□ Applied to many IT hardware developments

□ Sometimes misinterpreted as
performance indication

□ Has become a self-fulfilling prophecy

□ Comes to an end within the next 5-10 years
ParProg 2020
Introduction

Chart 10

Moore’s Law

ParProg 2020
Introduction

Chart 11

Moore’s Law

[Wikimedia]

■ Gate’s law: “The speed of software halves every 18 months.”

■ Wirth’s law: “Software is getting slower more rapidly than hardware becomes
faster.”

■ May’s law: “Software efficiency halves every 18 months, compensating
Moore's Law.”

■ Jevons paradox:
“Technological progress that increases the efficiency with which a resource is
used tends to increase (rather than decrease) the rate of consumption of that
resource.”

■ Zawinski's Law of Software Envelopment:
“Every program attempts to expand until it can read mail.
Those programs which cannot so expand are replaced by ones which can.” ParProg 2020

Introduction

Chart 12

Moore‘s Law vs. Software

ParProg 2020
Introduction

Chart 13

Processor Speed Development

Transistors #
Clock Speed (Mhz)
Power (W)
Perf/Clock (ILP)

„Work harder“

„Work smarter“

[Herb Sutter, 2009]

■ Power: Energy needed per time unit

□ Power density: Watt/mm2
→ Cooling

■ Static power: Leakage of transistors while being inactive

■ Dynamic power: Energy needed to switch a gate

■ Moore’s law: N goes up exponentially, C goes down with the size

■ The trick

□ Bringing down V reduces energy consumption, quadratically

□ Don’t use all the N for gates (e.g. caches)

□ Keeps the dynamic power increase moderate

□ We can happily increase F with N for faster computation

ParProg 2020
Introduction

Chart 14

A Physics Problem

Dynamic Power ~
Number of Transistors (N) x Capacitance (C) x

Voltage2 (V2) x Frequency (F)

ParProg 2020
Introduction

Chart 15

Processor Supply Voltage

1

10

100

1970 1980 1990 2000 2010

P
o

w
e
r

S
u

p
p

ly
 (

V
o

lt
)

Processor Supply VoltageProcessor Supply Voltage

[Moore, ISSCC]

ParProg 2020
Introduction

Chart 16

Transistor Usage

[https://en.wikichip.org/wiki/ibm/microarchitectures/power9]

ParProg 2020
Introduction

Chart 17

Power Density

■ Higher temperature leads to

□ Increased transistor leakage

□ Decreased transistor speed

□ Higher failure probability

ParProg 2020
Introduction

Chart 18

Power Density = Temperature

S. Reda. Brown U. EN2912C Fall ‘08 3

Challenge 1: The temperature wall
1st CPU 2nd CPU

cache

P
o

w
e
r

4
 s

e
rv

e
r

c
h

ip

thermal profile during runtime

Temperature increase:

• increases leakage current/power

• slows circuits
• Prevent performance increase

• Failure chance increases

[source: Devgan’05]

ParProg 2020
Introduction

Chart 19

Power Density

2

©
2
0
0
7

,
K

ev
in

 S
k
ad

ro
n

“Cooking-Aware” Computing?

[Kevin Skadron, 2007]

ParProg 2020
Introduction

Chart 20

Power Density
Power Density vs. Critical Dimension

10001000 Rocket NozzleRocket Nozzle

100100

mm
22

Nuclear ReactorNuclear Reactor

Pentium® 4 processorPentium® 4 processor

Pentium® III processorPentium® III processor
Pentium® II processorPentium® II processor

1010

W
/c

m
W

/c
m

Hot PlateHot Plate

Pentium® Pro processorPentium® Pro processor

Pentium® processorPentium® processor

i486i486

1010

i386i386
11

0.010.010.10.1111010

CD (CD (m)m)

June 2011

M
4

Source: G. Taylor, “Energy Efficient Circuit Design and the Future of Power Delivery” EPEPS’09

CD (CD (m)m)

[Taylor, 2009]

ParProg 2020
Introduction

Chart 21

Power Density

ParProg 2020
Introduction

Chart 22

Second Problem: Leakage Increase

0.001

0.01

0.1

1

10

100

1000

1960 1970 1980 1990 2000 2010

P
o

w
e

r
(W

)

Processor Power (Watts) Processor Power (Watts) -- Active & Leakage Active & Leakage

ActiveActive

LeakageLeakage

[www.ieeeghn.org]

■ Even if we would keep F constant

□ N continues to increase exponentially → dynamic power

□ Increasing N sums up to more leakage → static power

■ Cooling performance is constant (100-125 Celsius)

□ Static and dynamic power consumption has a limit

■ Further reducing V for compensating an additionally increased F

□ Also makes the transistors slower

□ We can’t do that endlessly, 0V is the limit

□ Strange physical effects

■ Increasing the frequency is no longer possible
→ “Power Wall”

■ Ok, so let’s use the additional N for smarter processors

ParProg 2020
Introduction

Chart 23

A Physics Problem

Dynamic Power = N x C x V2 x F

■ Increasing transistor count was also used for more gate logic in
instruction level parallelism (ILP)

□ Instruction pipelining

– Overlapped execution of serial instructions

□ Superscalar execution

– Multiple execution units are used in parallel

□ Out-of-order execution

– Reorder instructions that have no data dependency

□ Speculative execution

– Control flow speculation, memory dependence prediction, branch
prediction

■ Today’s processors are packed with ILP logic

ParProg 2020
Introduction

Chart 24

Instruction Level Parallelism

■ No longer cost-effective to dedicate
new transistors to ILP mechanisms

■ Deeper pipelines make the
power problem worse

■ High ILP complexity effectively
reduces the processing
speed for a given frequency
(e.g. mispredictions)

■ More aggressive ILP
technologies too risky for
products due to unknown
real-world workloads

■ → “ILP wall”

■ Ok, so let’s use the additional N for more caches

ParProg 2020
Introduction

Chart 25

The ILP Wall

[Wikipedia]

ParProg 2020
Introduction

Chart 26

Memory Hierarchy

CPU core CPU core CPU core CPU core

L2 Cache L2 Cache

L3 Cache

L1 Cache L1 Cache L1 Cache L1 Cache

Bus

Bus Bus

ParProg 2020
Introduction

Chart 27

Memory Wall

■ Sandia National Labs investigated the speedup achievable by increasing
parallelism (ILP, multiple processors) in 2009

■ Example: Number of clerks behind a supermarket counter

□ Two clerks can serve more customers than one

□ 4 ? 8 ? 16 ? 32 ? 64 ? ... 1000 ?

■ The problem: Shared memory is ‚shared‘

□ Memory bandwidth

– Memory transfer speed is limited by the power wall

– Memory transfer size is limited by the power wall

– Putting memory into the processor is too costly

□ Bus contention

■ Another problem: Memory need kept the pace of CPU speedup

■ → “Memory wall”

ParProg 2020
Introduction

Chart 28

Memory Wall

ParProg 2020
Introduction

Chart 29

Processor Speed Development

[Herb Sutter, 2009]
■ Clock speed curve flattened in

2003

□ Heat

□ Power consumption

□ Leakage

■ 3-4 GHz since 2001 (!)

■ Speeding up the serial
instruction execution through
clock speed improvements no
longer works

■ We stumbled into the Many-
Core Era

ParProg 2020
Introduction

Chart 30

Conventional Wisdoms Replaced

Old Wisdom New Wisdom

Power is free, transistors are expensive „Power wall“

Only dynamic power counts Static leakage makes 40% of power

Multiply is slow, load-and-store is fast „Memory wall“

Instruction-level parallelism gets constantly
better via compilers and architectures

„ILP wall“

Parallelization is not worth the effort,
wait for the faster uniprocessor

Performance doubling might now take 5 years
due to physical limits

Processor performance improvement
by increased clock frequency

Processor performance improvement
by increased parallelism

■ Power consumption increases with Moore‘s law,
even under constant frequencies

■ Cooling is a constant factor

□ Maximum temperature of 100-125 C

□ Hot spots make it worse

■ Next-generation processors need to use less power

□ Lower the frequencies

□ Dynamic frequencies scaling (see latest Intel products)

□ Minimize ‚power per bit of I/O‘ [Skadron 2007]

□ Better cache locality, stop moving stuff around

□ Start to use specialized co-processors and accelerators

ParProg 2020
Introduction

Chart 31

Power Wall 2.0

ParProg 2020
Introduction

Chart 32

Power Wall 2.0 = Dark Silicon

“Dark Silicon and the End of

Multicore Scaling”

by Hadi Esmaeilzadeh, Emily

Blem, Renée St. Amant,

Karthikeyan Sankaralingam,

Doug Burger

■ Hardware people

□ Number of transistors N is still increasing

□ Building larger caches no longer helps (memory wall)

□ ILP is out of options (ILP wall)

□ Voltage / power consumption is at the limit (power wall)

– Some help with dynamic scaling approaches

□ Frequency is stalled (power wall)

□ Only possible offer is to use increasing N for more cores

■ For faster software in the future ...

□ Speedup must come from the utilization of an increasing core count,
since F is now fixed

□ Software must participate in the power wall handling, to keep F fixed

□ Software must tackle the memory wall

ParProg 2020
Introduction

Chart 33

The Situation

■ Work Harder
(clock speed)

■ Work Smarter
(optimization, caching)

■ Get Help
(parallelization)

ParProg 2020
Introduction

Chart 34

Three Ways of Doing Anything Faster [Pfister]

Application

Instructions

■ Parallelization not only in
computer science

□ Building construction, car
manufacturing, large companies

■ The basic idea is easy to understand

■ Meanwhile tons of options for parallel
processing

□ Languages, execution
environments, patterns

■ Parallelism is a hardware property
that must be exploited by software

□ „A parallel computer is a set of
processors that are able to work
cooperatively to solve a
computational problem.“

(Foster 1995)

ParProg 2020
Introduction

Chart 35

Getting Help

Problem

Thank you
for your attention!

