

Digital Engineering • Universität Potsdan

Parallel Programming and Heterogeneous Computing

A2 - Parallel Hardware

Max Plauth, Sven Köhler, Felix Eberhardt, <u>Lukas Wenze</u>l and Andreas Polze Operating Systems and Middleware Group

Types of Parallel Hardware

Task Level Parallelism

Multiple operations are executed in parallel.

Data Level Parallelism

The same operation is applied in parallel to multiple units of data.

ParProg 2020 A2 Parallel Hardware

Lukas Wenzel

Hardware Taxonomy [Flynn1966]

ParProg 2020 A2 Parallel Hardware

Lukas Wenzel

Chart 3

Hardware Taxonomy [Flynn1966]

Multiple

ParProg 2020 A2 Parallel Hardware

Lukas Wenzel

Chart 4

MISD Hardware

Most exotic class of parallel hardware, not in mainstream use.

- Redundant systems like safety-critical embedded controllers or high-reliability mainframes
- Parallelism not for performance, but dependability

Example: Triple Modular Redundant Architecture

ParProg 2020 A2 Parallel Hardware

Lukas Wenzel

Not covered in this lecture.

Covered in chapter C.

SIMD Hardware

Popular class of parallel hardware for special purpose systems.

- = Vector processors
- Early examples: ILLIAC IV, Cray-1, ...

Recently in widespread use:

- GPUs
- Instruction Set Extensions (AltiVec, SSE, AVX, ...)

- ParProg 2020 A2 Parallel Hardware
- Lukas Wenzel

Chart **6**

NVidia Pascal GPU Module

MIMD Hardware

Classic and most general class of parallel hardware.

Wide range of systems from = Multicore CPUs to Supercomputers and Clusters

POWER9 Die with 24 Cores

Variety of architectures and characteristics requires further distinction

Summit Supercomputer

Lukas Wenzel

MIMD Hardware Taxonomy

MIMD Hardware Taxonomy

Parallel Hardware Lukas Wenzel Multiprocessor Multicomputer VS. Chart 9 see [Tanenbaum1985], [Foster1995], [Pfister1998]

HP

Hasso Plattner

Institut

Processing elements can directly access a **common address space**

Uniform memory access (UMA) system

Processing elements observe the same memory access characteristics over the entire memory.

Simple to program against, but scalability issues

Non-uniform memory access (NUMA) system

Processing elements have different access characteristics for different memory regions

> Scales well, but unaware programs can exhibit performance issues

ParProg 2020 A2 Parallel Hardware

Lukas Wenzel

SM-MIMD Hardware

Processing elements can access their **private address spaces** and **exchange messages**

Cluster: Multiple independent machines connected through a network

- **Compute** cluster: Speedup
- **Load Balancing** cluster: Throughput
- High Availability cluster: Dependability

All clusters are distributed systems, but only compute clusters intended for parallel workloads.

ParProg 2020 A2 Parallel Hardware

Lukas Wenzel

This lecture considers only compute clusters.

DM-MIMD Hardware

Simple way of scaling available compute resources:

Just connect multiple machines in a network.

Dominant architecture for High-End Systems:

Especially High-Performance Computing

- 1995 *Toy Story* Render Farm 117 nodes × 2 CPUs = 234 CPUs
- 2001 *Monsters Inc.* Render Farm 250 nodes × 14 CPUs = 3500 CPUs
- 2019 Summit cluster (TOP500 #1 in 2019) 4608 nodes, 2 PB RAM, 10 MW power × 2 CPUs × 22 Cores = 202 752 Cores × 6 GPUs = 27 648 GPUs

Summit Cluster

Cluster of RaspberryPI Singleboard Computers

Lukas Wenzel

Chart 13

Computers

Literature

[Flynn1966]

"Very High-Speed Computing Systems" Flynn, Michael J. Proceedings of the IEEE 54.12 (1966) IEEE

[Tanenbaum 1985]

"Distributed Operating Systems" Tanenbaum, Andrew S and Van Renesse, Robbert. ACM Computing Surveys 17.4 (1985) ACM

[Foster1995]

"Designing and Building Parallel Programs" Foster, Ian (1995) Addison-Wesley

[Pfister1998]

"In Search of Clusters" Pfister, Gregory F. 2nd edition (1998) Prentice-Hall Inc

ParProg 2020 A2 Parallel Hardware

Lukas Wenzel

Chart 14

Digital Engineering • Universität Potsdam

And now for a break and a bowl of Sencha.