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■ 1961, Atlas Computer & LEO III
□ Based on Germanium transistors,

military use & accounting
□ First use of interrupts to simulate concurrent 

execution of multiple programs -
multiprogramming

■ 60‘s and 70‘s: Foundations for concurrent
software developed 
□ 1965, Cooperating Sequential Processes,

E. W. Dijkstra
– First principles of concurrent programming
– Basic concepts: Critical section, mutual 

exclusion, fairness, 
speed independence

Concurrency in History

Sven Köhler

ParProg20 B1 
Concurrency & 
Synchronization

Chart 2

Atlas

Leo III



Sven Köhler

ParProg20 B1 
Concurrency & 
Synchronization

Chart 31CooperatingSequential
Processes

Edsger Wybe Dijkstra 



Paper starts with a discussion of theoretical sequential machines.
Example: Sequential electromagnetic solution to find the index of the 
largest value in an array.
Building block: Binary comparator cell

□ Current lead through magnet coil
□ Switch to magnet with larger current

Cooperating Sequential Processes [Dijkstra1965]
A Comparator
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■ Progress of time is relevant
□ After applying one step, machine needs 

some time to show the result
□ Same line differs only in left operand
□ Concept of a parameter that comes from past operations,

leads to alternative setup for the same behavior
■ Rules of behavior form a program

Cooperating Sequential Processes [Dijkstra1965]
Sequence of Comparators
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■ Idea: Many programs for expressing the same intent
■ Example: Consider repetitive nature of the problem

□ Invest in a variable j 
à generalize the solution for any number of items

Cooperating Sequential Processes [Dijkstra1965]
Different Expressions of Sequence
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■ Assume we have multiple of these sequential programs
■ How about the cooperation between such, maybe loosely coupled, 

sequential processes ?
□ Beside rare moments of communication, 

processes run autonomously
■ Disallow any assumption about the relative speed

□ Aligns to understanding of sequential process, 
which is not affected in its correctness by execution speed

□ If this is not fulfilled, might result in “analogue interferences“
(race conditions).

■ Prevention: A critical section for two cyclic sequential processes
□ At any moment, at most one process is engaged in the section
□ Implemented through common variables
□ Implementation requires atomic read / write behavior

Cooperating Sequential Processes [Dijkstra1965]
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■ N tasks have some code - critical section - with shared data access
■ Mutual Exclusion demand

□ Only one task at a time is allowed into its critical section, among all 
tasks that have critical sections for the same resource.

■ Progress demand

□ If no other task is in the critical section, the decision for entering 
should not be postponed indefinitely. Only tasks that wait for entering 
the critical section are allowed to participate in decisions. 

■ Bounded Waiting demand

□ It must not be possible for a task requiring access to a critical section 
to be delayed indefinitely by other threads entering the section 
(starvation problem)

Critical Section Problem
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■ parbegin / parend extension to ALGOLG60 – every statement within 
compound block  is run concurrently

■ Assumes atomicity on statement (source code line) level
■ A cycle is a repeated synchronization, critical section and non-critical 

remainder part of two cooperating processes.

Cooperating Sequential Processes [Dijkstra1965]
Compounds and cycles

Sven Köhler

ParProg20 B1 
Concurrency & 
Synchronization

Chart 10

begin S1; parbegin S2; S3; S4 parend; S5 end 

S2

S3

S4

S5S1

Sync
parbegin parend

CS RemainderSync

Sync CS RemainderSync



■ First approach:
□ Passing a single flag

■ Discussion:
□ Too restrictive, since

strictly alternating
□ One process may die

or hang outside of
the critical section
(no progress)

Cooperating Sequential Processes [Dijkstra1965]
Approach #1: Turn Flag
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■ Separate indicators 
for enter/ leave

■ More fine-grained
waiting approach

■ Too optimistic, both
processes may end 
up in the critical section
(no mutual exclusion)

Cooperating Sequential Processes [Dijkstra1965]
Approach #2: Two Flags

Sven Köhler

ParProg20 B1 
Concurrency & 
Synchronization

Chart 12



■ First raise the flag, 
then check for the other

■ Mutual exclusion works
□ If c1=0, then c2=1, 

and vice versa in CS
■ Variables change outside 

of the critical section only
□ Danger of mutual 

blocking (deadlock)

Cooperating Sequential Processes [Dijkstra1965]
Approach #3: First Raise, then Check
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■ Reset locking of critical 
section if the other one 
is already in

■ Problem due to assumption
of relative speed

□ Can lead for one slow process 
to starve (bounded waiting)

□ or live lock (both spinning)

Cooperating Sequential Processes [Dijkstra1965]
Approach #4: Raise, Check, Lower, Repeat
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■ Solution: Dekker‘s algorithm, attributed by Dijkstra
□ Combination of approach #4 and a variable `turn`,

which realizes mutual blocking avoidance through prioritization
□ Idea: Spin for section entry only if it is your turn

Cooperating Sequential Processes [Dijkstra1965]
Solution: Dekker got it!
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def lock(i) { # wait until we have the smallest num
choosing[i] = True;
num[i] = max(num[0],num[1] ...,num[n-1]) + 1;
choosing[i] = False;
for (j = 0; j < n; j++) {

while (choosing[j]) ; 
while ((num[j] != 0) && 
((num[j],j) “<” (num[i],i)))

{};}}

def unlock(i) {
num[i] = 0; }

lock(i)
… critical section …
unlock(i)

Bakery Algorithm [Lamport1974]
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■ Dekker provided first correct solution only based on shared memory, 
guarantees three major properties 
□ Mutual exclusion
□ Freedom from deadlock
□ Freedom from starvation

■ Generalization by Lamport with the Bakery algorithm
□ Relies only on memory access atomicity

■ Both solutions assume atomicity and predictable sequential execution on 
machine code level

■ Situation today: Unpredictable sequential instruction stream
– Out-of-order execution
– Re-ordered memory access
– Compiler optimizations 

The Downside of Proposed Solutions
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■ Test-and-set processor instruction, wrapped by the operating system or compiler

□ Write to a memory location and return its old value as atomic step

□ Also known as compare-and-swap (CAS) or read-modify-write

■ Idea: Spin in writing 1 to a memory cell, until the old value was 0

□ Between writing and test, no other operation can modify the value

■ Busy waiting for acquiring a (spin) lock

■ Efficient especially for short 
waiting periods

■ For long periods try to deactivate
your processor between loops.

Test-and-Set Instructions

function Lock(boolean *lock) {
while (test_and_set (lock))
;

}

#define LOCKED 1
int TestAndSet(int* lockPtr) {

int oldValue;
oldValue = SwapAtomic(lockPtr, LOCKED);
return oldValue == LOCKED;

}
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■ Find a solution to allow waiting sequential processes to sleep

■ Special purpose integer called semaphore, two atomic operations

□ P-operation: Decrease value of its argument semaphore by 1, 
“wait” if the semaphore is already zero

□ V-operation: Increase value of its argument semaphore by 1,
useful as „signal“ operation

■ Solution for critical section shared between N processes

■ Original proposal by Dijkstra did not mandate any wakeup order

□ Later debated from operating system point of view 

□ „Bottom layer should not bother with macroscopic considerations“

Cooperating Sequential Processes [Dijkstra1965]
Binary and General Semaphores
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wait (S):  
while (S <= 0);
S--;

signal (S):
S++;



Cooperating Sequential Processes [Dijkstra1965]
Example: Binary Semaphore
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Cooperating Sequential Processes [Dijkstra1965]
Example: General (Counting) Semaphore
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https://www.youtube.com/watch?v=6sIlKP2LzbA

https://www.youtube.com/watch?v=6sIlKP2LzbA
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■ Five philosophers work in a college, each philosopher has a room for 
thinking

■ Common dining room, furnished with a circular table, 
surrounded by five labeled chairs

■ In the center stood a large bowl of spaghetti, which was constantly 
replenished

■ When a philosopher gets hungry:
□ Sits on his chair
□ Picks up his own fork on the left

and plunges it in the spaghetti, 
then picks up the right fork

□ When finished he put down both forks 
and gets up 

□ May wait for the availability of the second fork

Dining Philosophers Problem [Dijkstra]
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■ Idea: Shared memory synchronization has different standard issues
■ Philosophers as tasks, forks as shared resource
■ Explanation of the deadly embrace (deadlock) and starvation
■ How can a deadlock happen ?

□ All pick the left fork first and wait for the right
■ How can a live-lock (starvation) happen ?

□ Two fast eaters, sitting in front of each other
■ Ideas for solutions

□ Waiter solution (central arbitration)
□ Lefty-righty approach

Dining Philosophers Problem [Dijkstra]
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■ PHILn is a righty (is the only one starting with the right fork)
□ Case 1: Has right fork, but left fork is held by left neighbor

– Left neighbor will put down both forks when finished, so there is a 
chance

– PHILn might always be interrupted before eating (starvation), but no 
deadlock of all participants occurs

□ Case 2: Has no fork
– Right fork is captured by right neighbor
– In worst case, lock spreads to all but 

one righty
■ Proof by Dijkstra shows deadlock freedom, 

but still starvation problem

Possible Solution: Lefty-Righty-Approach
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■ 1970. E.G. Coffman and A. Shoshani. 
Sequencing tasks in multiprocess systems to avoid deadlocks. 
□ All conditions must be fulfilled to allow a deadlock to happen
□ Mutual exclusion condition - Individual resources are available or held by 

no more than one task at a time
□ Hold and wait condition – Task already holding resources may attempt to 

hold new resources
□ No preemption condition – Once a task holds a resource, it must 

voluntarily release it on its own
□ Circular wait condition – Possible for a task to wait for a resource held by 

the next thread in the chain
■ Avoiding circular wait turned out to be the easiest solution for deadlock 

avoidance

■ Avoiding mutual exclusion leads to non-blocking synchronization
□ These algorithms no longer have a critical section

Coffman Conditions [Coffman1970]
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■ Generalization of the subroutine concept
□ Explicit language primitive to indicate transfer of control flow

□ Leads to multiple entry points in the routine
■ Routines can suspend (yield) and resume in their execution 

■ Co-routines may always yield new results (=> generators)
□ Less flexible version of a coroutine, since yield always returns to caller

■ Good for concurrent, not for parallel programming

■ Foundation for other concurrency concepts
□ Exceptions, iterators, pipes, …

■ Implementation demands stack handling and
context switching
□ Portable implementations in C are difficult

□ Fiber concept in the operating system is helpful

Coroutines [Conway1963]
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Coroutines

def generator():
for i in range(5):

yield i * 2

for item in generator():
print(item)

var q := new queue
coroutine produce

loop
while q is not full

create some new items
add the items to q

yield to consume
coroutine consume

loop
while q is not empty

remove some items from q
use the items

yield to produce
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□ First formal description of monitor concept, originally invented by 
Brinch Hansen in 1972 as part of an OS project

□ Operating system has to schedule requests for various resources, 
separate schedulers per resource necessary

□ Each contains local administrative data, and functions used by 
requestors

□ Collection of associated data and functionality: monitor
– Note: The paper mentions Simula 67 classes (1972)
– Functions are the same for all instances, but invocations should be 

mutually exclusive
– Function execution is the occupation of the monitor
– Easily implementable with semaphores

Monitors [Hoare1974]
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■ Function implementation itself might need to wait at some point
□ Monitor wait() operation: Issued inside the monitor, 

causes the caller to wait and temporarily release the monitor while 
waiting for some assertion

□ Monitor signal() operation: 
Resume one of the waiting callers

■ Might be more than one reason for waiting inside the function
□ Variable of type condition in the monitor, one for each waiting reason
□ Delay operations relate to some specific condition variable: 

condvar.wait(), condvar.signal()
□ Programs are signaled for the condition they are waiting for
□ Hidden implementation as queue of waiting processes

Condition Variables
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Single Resource Monitor
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■ Monitors are part of the Java programming language
■ Add synchronized keyword to method, to make access exclusive.
■ Object base class provides condition variable functionality –

Object.wait(), Object.notify(), and a wait queue, callable from 
synchronized methods

■ At runtime
□ By calling object.wait(), a thread gives up ownership of the monitor 

and blocks in the call
□ Monitor is also given up by leaving the synchronized method
□ Other threads call object.notify() to signal waiters, but still must give 

up the ownership of the monitor

Monitors in Java
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Java Example

class Queue { 
int n; 
boolean valueSet = false; 
synchronized int get() { 
while(!valueSet) 
try { this.wait(); } 
catch(InterruptedException e) { ... } 

valueSet = false; 
this.notify(); 
return n; 

} 
synchronized void put(int n) { 
while(valueSet) 
try { this.wait(); } 
catch(InterruptedException e) { ... } 

this.n = n; 
valueSet = true; 
this.notify(); 

}
}

class Producer implements Runnable { 
Queue q; 
Producer(Queue q) { 
this.q = q; 
new Thread(this, "Producer").start(); } 

public void run() { 
int i = 0; 
while(true) { q.put(i++); } 

}}

class Consumer implements Runnable { ... }

class App { 
public static void main(String args[]) { 
Queue q = new Q(); 
new Producer(q); 
new Consumer(q); 

} 
}
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■ Today: Multitude of high-level synchronization primitives
■ Spinlock

□ Perform busy waiting, lowest overhead for short locks

■ Reader / Writer Lock
□ Special case of mutual exclusion through semaphores
□ Multiple „Reader“ tasks can enter the critical section at the same time, 

but „Writer“ task should gain exclusive access
□ Different optimizations possible: 

minimum reader delay, minimum writer delay, throughput, …

Other High-Level Primitives
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High-Level Primitives: Concurrent Collections

Microsoft Parallel Patterns Library
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concurrency support 



■ Lock can be obtained several times without locking on itself
■ Useful for cyclic algorithms (e.g. graph traversal) and problems were lock 

bookkeeping is very expensive
■ Reentrant lock needs to remember the locking task(s), which increases 

the overhead

High-Level Primitives: Reentrant Lock
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High-Level Primitives: Barrier
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■ All concurrent activities stop there and continue together
■ Participants statically defined at compile- or start-time



■ Lock-free programming as a way of sharing data without maintaining 
locks
□ Prevents deadlock and live-lock conditions
□ Goal: 

Suspension of one thread never prevents another thread from making 
progress (e.g. synchronized shared queue)

□ Blocking by design does not disqualify the lock-free realization
■ Algorithms rely on hardware support for atomic operations

□ Read-Modify-Write (RMW) operations
□ Compare-And-Swap (CAS) operations

■ These operations are typically mapped in operating system API

Lock-Free Programming
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Lock-Free Programming
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void LockFreeQueue::push(Node* newHead)
{

for (;;)
{

// Copy a shared variable (m_Head) to a local.
Node* oldHead = m_Head;
// Do some speculative work, not yet visible to other threads.
newHead->next = oldHead;
// Next, attempt to publish our changes to the shared variable.
// If the shared variable hasn't changed, the CAS succeeds and we return.
// Otherwise, repeat.
if (_InterlockedCompareExchange(&m_Head, newHead, oldHead) == oldHead)

return;
}

}



Sequential Consistency
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int x = 23, y = 0;

bool done = false;

x = 42;

done = true;

while (!done) {}

y = x;

printf("%d\n", y); y?
Boehm, H. J., & Adve, S. V. (2012). You don't know jack about shared variables or memory models. Communications of the ACM, 55(2), 48-54.



Instruction Reordering
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int x = 0, y = 0;

x = 2000;

y = 11;

printf("%d\t", y);

printf("%d\n", x);

?Possible Outputs:
• 0       0

• 0       2000
• 11     2000

• 11     0

Arch LoadLoad LoadStore StoreLoad StoreStore

x86, amd64 ✓

ARM, Power ✓ ✓ ✓ ✓

When is reordering allowed (per Thread)?



■ Consistency model where the order of 
memory operations is consistent with 
the source code
□ Important for lock-free algorithm 

semantic
□ Not guaranteed by some processor 

architectures (e.g. ARM/Power)
■ Java and C++ support the enforcement 

of sequential consistency
□ Compiler generates additional memory fences and RMW operations
□ Still does not prevent from memory re-ordering due to instruction re-

ordering by the compiler itself

Sequential Consistency

std::atomic<int> X(0), Y(0);
int r1, r2;

void thread1() {
X.store(1);
r1 = Y.load();

}

void thread2() {
Y.store(1);
r2 = X.load();

}
r1 and r2 never become 
zero at the same time
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https://en.cppreference.com/w/cpp/atomic/atomic/store

https://en.cppreference.com/w/cpp/atomic/atomic/store


Transactional Memory [C++ JTC1/SC22 Proposal]

Sven Köhler

ParProg20 B1 
Concurrency & 
Synchronization

Chart 46

void LockFreeQueue::push(Node* newHead)
{

atomic_noexcept
{

// begin tranxaction
Node* oldHead = m_Head;
// Do some speculative work, not yet visible to other threads.
newHead->next = oldHead;
// Next, attempt to publish our changes to the shared variable.
// If the write operation encounters an invalidated cache, fail

oldHead = newHead;
// commit transaction, repeat on fail.

}
}



Transactional Memory (POWER8)
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the current thread must not operate on the shared locations
transactionally, so the transaction is aborted using a tabort
instruction. The tabort causes the transactional state to
change to Non-Transactional and control to transfer to the
address pointed to by TFHAR (the conditional branch to the
failure handler). Though not shown here, a set of conditional
tabort instructions is also provided that compare the
contents of one register to the contents of another register
or to a specified value and abort the transaction based on
the outcome of the comparison. These instructions remove
the need to have explicit compare and branch instructions
around a tabort in cases in which aborting the transaction
is conditional.
If, however, the lock word indicates that no thread is

performing the transaction’s function in a critical section,

the transaction continues by branching around the tabort.
Because the lock word has been loaded and therefore is in
the transaction’s load footprint, the transactional tracking
mechanism will cause the transaction to fail if another
thread successfully enters a failure handler’s critical section
(that is controlled by this lock) while the transaction is
in progress.
The transaction can then execute one or more transactional

load and store instructions, and most other user-level
instructions in the Power ISA (a few user-level instructions,
generally those having effects that cannot be rolled back
on a transaction failure, are disallowed inside a transaction,
and cause the transaction to fail if used inside a transaction
[6]). All stores within a transaction are speculative, are
visible only to the thread that executed the stores until

Listing 1 Example transaction and failure handler.

H. Q. LE ET AL. 8 : 3IBM J. RES. & DEV. VOL. 59 NO. 1 PAPER 8 JANUARY/FEBRUARY 2015

Le, Hung Q., et al. "Transactional memory support in the IBM POWER8 processor." IBM Journal of Research and Development 59.1 (2015): 8-1.

• concurrent writes detected
via cache invalidation

• cpu status flag signals
failed transaction

• fail handler can choose
to use lock elision



■ „Concurrency is still more art than science“
□ Identify truly independent computations
□ Implement concurrency at the highest level possible
□ Plan early for scalability
□ Code re-use through libraries
□ Use the right threading model
□ Never assume a particular order of execution
□ Use thread-local storage if possible, apply locks to specific data
□ Don‘t change the algorithm for better concurrency

8 Simple Rules For Concurrency [Breshears2009]
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And now for a break and
a cup of macchiato*.

*or beverage of your choice 


