Hasso
Plattner
Institut

Digital Engineering + Universitat Potsdam

Parallel Programming and Heterogeneous Computing

Shared-Memeory: Concurrency & Synchronization

Max-Plauth, Sven Kéhler, Felix Eberhardt, Lukas Wenzel, and Andreas Polze

Operating Systems and Middleware Group -

Concurrency in History

m 1961, Atlas Computer & LEO III

o Based on Germanium transistors,
military use & accounting

o First use of interrupts to simulate concurrent
execution of multiple programs -
multiprogramming

s 60‘s and 70's: Foundations for concurrent
software developed

o 1965, Cooperating Sequential Processes,
E. W. Dijkstra

— First principles of concurrent programming

- Basic concepts: Critical section, mutual
exclusion, fairness,
speed independence

Hasso
Plattner
Institut

ParProg20 B1
Concurrency &
Synchronization

Sven Kohler

Chart 2

Cooperating
Sequential
Processes

Hasso
Plattner
Institut

ParProg20 B1
Concurrency &
Synchronization

Sven Kohler

Chart 3

Cooperating Sequential Processes [Dijkstral965] ﬂHasso

Platt
A Comparator Institut

Paper starts with a discussion of theoretical sequential machines.

Example: Sequential electromagnetic solution to find the index of the
largest value in an array.

Building block: Binary comparator cell
o Current lead through magnet coil
o Switch to magnet with larger current

X

y A X y A
A ParProg20 B1
| Concurrency &

—_— y<x? Synchronization
c ' ' Sven Kohler
B Tc BT I
Fig. 1. x<y Fig. 2. y<x no yes Chart 4

Cooperating Sequential Processes [Dijkstral965]
Sequence of Comparators

1
[a[1]<a[2] 2]

) -
lal1]<al3] 2] |a[2]<a[3] 7] (Z‘;I)
el .

H1]<a{:4]l ?{ [a[2]<a[4]l?| l?[3]<a{4]l?[a[i}<aE2]ﬂ
—%1 ?2 %3 734
M F+ig.3. N * {a[i] <eg(3]7

— | 1= 3

= Progress of time is relevant il <ale] 7

o After applying one step, machine needs
some time to show the result

o Same line differs only in left operand

i:= 4

o Concept of a parameter that comes from past operations,
leads to alternative setup for the same behavior

= Rules of behavior form a program

Hasso
Plattner
Institut

ParProg20 B1
Concurrency &
Synchronization

Sven Kohler

Chart 5

Cooperating Sequential Processes [Dijkstral965]
Different Expressions of Sequence

Hasso
Plattner
Institut

= Idea: Many programs for expressing the same intent
s Example: Consider repetitive nature of the problem

o Invest in a variable j
- generalize the solution for any number of items

a[1]< 3[2] ?
= \{' Ghi<d317] [al<al 7]
: i -
o[1] < a2] 7 L= 15 (I=gn) CEs-ed [ol<dar]
LIPS I —|E“ }32 3 4
I — —
' ParProg20 B1
ii= 1y je= 1 Concurrency &
back: if § £ n tren Synchronization
_begin ji= g o+ 1 Sven Koéhler
if a[i] < ai:j] then i:= jj;
gato back Chart 6
—— end" .
— — end

Cooperating Sequential Processes [Dijkstral965]

Assume we have multiple of these sequential programs

How about the cooperation between such, maybe loosely coupled,
sequential processes ?

o Beside rare moments of communication,
processes run autonomously

Disallow any assumption about the relative speed

o Aligns to understanding of sequential process,
which is not affected in its correctness by execution speed

o If this is not fulfilled, might result in “analogue interferences"
(race conditions).

Prevention: A critical section for two cyclic sequential processes
o At any moment, at most one process is engaged in the section
o Implemented through common variables

o Implementation requires atomic read / write behavior

Hasso
Plattner
Institut

: Race condition

ParProg20 B1
Concurrency &
Synchronization

Sven Kohler

Chart 7

Critical Section

TO

T1

T2

(suoibas Adowaw *H6°3) 224n0SaYy paleys

Hasso
Plattner
Institut

ParProg20 B1
Concurrency &
Synchronization

Sven Kohler

Chart 8

Critical Section Problem

N tasks have some code - critical section - with shared data access
Mutual Exclusion demand

o Only one task at a time is allowed into its critical section, among all
tasks that have critical sections for the same resource.

Progress demand

o If no other task is in the critical section, the decision for entering
should not be postponed indefinitely. Only tasks that wait for entering
the critical section are allowed to participate in decisions.

Bounded Waiting demand

o It must not be possible for a task requiring access to a critical section
to be delayed indefinitely by other threads entering the section
(starvation problem)

Hasso
Plattner
Institut

: Critical Section

: Mutual Exclusion
: Progress

: Bounded Waiting

ParProg20 B1
Concurrency &
Synchronization

Sven Kohler

Chart 9

Cooperating Sequential Processes [Dijkstral965] ﬂHasso

Compounds and cycles FA?E?S{

m parbegin / parend extension to ALGOLG60 - every statement within
compound block is run concurrently

begin S1; parbegin S2; S3; S4 parend; S5 end

S1 —1—> S3 —1—> S5

» Assumes atomicity on statement (source code line) level
m A cycle is a repeated synchronization, critical section and non-critical

remainder part of two cooperating processes. ParProg20 B1
_ Concurrency &
» Sync — CS — Sync — Remainder Synchronization
parbegin < — parend Sven Kohler

v

Sync — CS — Sync — Remainder

Chart 10

<
<

Cooperating Sequential Processes [Dijkstral965]
Approach #1: Turn Flag

Hasso
Plattner
Institut

s First approach:

. . "begin integer turn; turn:= 1;
o Passing a single flag

parbegin
] DiSCUSSiOI‘\: process 1: begin L1: if turn = 2 then goto L1;
o Too restrictive, since critical section 1;
strictly alternating tume= 2
] remainder of cycle 1; gota L1
o One process may die ond;
or hang OUtSide. Of process 2: begin L2: if turn =1 then goto L2;
the critical section critical section 2;
(no progress) tuzni= 1;
remainder of cycle 2; goto L2 ParProg20 B1
end Concurrency &
end - Synchronization
E TEen
Sven Kdhler

[— B
Chart 11

Cooperating Sequential Processes [Dijkstral965] Hlasso
. Plattner
Approach #2: Two Flags Institut
= Separate indicators "begin integer cf, c2;
for enter/ leave eli= 15 c2i= 15
. . rbegin
= More fine-grained ‘L—Lp;cess b 1 it o e
L. H n I c2 = en oto ;
waiting approach =
= Too optimistic, both critical section 1;
processes may end cli= 1
up in the critical section zemeinder of cycle 1; goto LI
(no mutual exclusion) end;
process 2: begin L2: if c! = O then goto L2;
c2:= C;
critical section 2; ParProgzo Bl
c2:= 13 Concurrency &
remzinder of cycls 2; goto L2 Synchronization
end Sven Koéhler
parend
= Chart 12

Cooperating Sequential Processes [Dijkstral965]

Approach #3: First Raise, then Check

m First raise the flag,
then check for the other

s Mutual exclusion works

o If c1=0, then c2=1,
and vice versa in CS

= Variables change outside
of the critical section only

o Danger of mutual
blocking (deadlock)

"begin integer cl, c2;

cl:=1; c2:= 1;

parbegin

process 1: begin Al:

cl:= Q;

Li:

end;

process 2: begin A2:

if c2=0 then gota L1;
critical section 1;
cl:= 1;

remairder of cycle 1; goto Al

c2:= 0;

L2:

if ¢l =0 then goto L2;

critical section 2;
c2:=1;

remainder of cycle 2; goto A2

end
parend
end"” .
L —

Hasso
Plattner
Institut

: Deadlock

ParProg20 B1
Concurrency &
Synchronization

Sven Kohler

Chart 13

Cooperating Sequential Processes [Dijkstral965]
Approach #4: Raise, Check, Lower, Repeat

» Reset locking of critical
section if the other one
is already in

s Problem due to assumption
of relative speed

o Can lead for one slow process
to starve (bounded waiting)

o or live lock (both spinning)

" . .
begin irteger ct, c2;

end"

cli= 1; c2:=1;

parbegin
Fracess 1: begin L1:

end;

process 2: begin L2:

parend

cl:= O

if €2 =0 zhen

begin cf:= 1; goto L1 end;

criticel section 13
cl:=1;

remainder of cycle 1; goto L1

c2:= 0;

if ¢t =0 then

begin ¢2:= 1; gota L2 end;

critical section 2;
c2:= 1;

remainder of cycle 2; gato L2

Hasso
Plattner
Institut

: Livelock

ParProg20 B1
Concurrency &
Synchronization

Sven Kohler

Chart 14

Cooperating Sequential Processes [Dijkstral965]
Solution: Dekker got it!

Hasso
Plattner
Institut

s Solution: Dekker's algorithm, attributed by Dijkstra

o Combination of approach #4 and a variable "turn’,
which realizes mutual blocking avoidance through prioritization

o Idea: Spin for section entry only if it is your turn

"begin integer cl, c2, turn;

cli="1; c2:= 1; turn:= 1;

process 1: begin Al: cl:= 0; process 2: begin A2: c2:= 0;
U: if c2=0 then L2: if cl =0 then
begin if turn =1 then goto Li; begia if turn = 2 then goto L2;
cli= 15 ci= 13
Bl: if tum =2 then goto B; - B2 it tem=1 then goto B2 ParProg20 B1
goto &1 gots A2 Concurrency &
end; gods Synchronization
critical section 1; critical section 2; Sven Kohler
turn:= 2; cl:i= 1; turn:= 1; c2:= 1;
remainder of cycle 1; goto Al remainder of cyclie 2; gota A2
e e Chart 15

Hasso
Plattner
Institut

akery Algorithm [Lamport1974]

def lock (i) { # wait until we have the smallest num
choosing[i] = True;
num[i] = max(num[0],num[l] ...,num[n-1]) + 1;
choosing[i] = False;
for (J = 0; 7 < n; J++) {
while (choosing[]])
while ((num[j] != 0) .
((numfj],7) “<” (num[] ;1))
{171}
def unlock (i) {
num [l] = 0; } ParProgZO B1
Concurrency &
Synchronization
lock (1) Sven Kohler
. critical section ..
unlock (1) Chart 16

Hasso
The Downside of Proposed Solutions E ng?&{

Dekker provided first correct solution only based on shared memory,
guarantees three major properties

o Mutual exclusion

critical section 2;
turn:= 1; c2:= 1;
o Freedom from deadlock

remainder of cycie 2; qata A2

o Freedom from starvation

Generalization by Lamport with the Bakery algorithm

o Relies only on memory access atomicity

Both solutions assume atomicity and predictable sequential execution on

machine code level ParProg20 B1

Situation today: Unpredictable sequential instruction stream Concurrency &
] Synchronization
- Out-of-order execution Sven Kéhler

- Re-ordered memory access
— Compiler optimizations Chart 17

Hasso
Plattner
Institut

Test-and-Set Instructions

s Test-and-set processor instruction, wrapped by the operating system or compiler
o Write to a memory location and return its old value as atomic step
o Also known as compare-and-swap (CAS) or read-modify-write

s Idea: Spin in writing 1 to a memory cell, until the old value was 0
o Between writing and test, no other operation can modify the value

m Busy waiting for acquiring a (spin) lock
function Lock(boolean *lock) {

.. . while (test and set (lock))
m Efficient especially for short He -

s . ! ParProg20 B1
waiting periods } Concurrency &
. . #define LOCKED 1 Synchronization
s For long periods try to deactivate int TestAndSet (int* lockPtr) { Sven Kéhler

your processor between loops. int oldvalue;

oldvalue = SwapAtomic(lockPtr, LOCKED);

return oldvValue == LOCKED;

} Chart 18

[—— ——

Hasso
Plattner
Institut

Let us take the period of time during which one of the processes is in

its critical section. We all know, that during that peried, no other processes

can enter their critical section and that, if they want to do so, they have to

wait until the current critical section execution has been completed. For the
remainder of that period hardly any activity is required from them: they have

to wait anyhow, and as far as we are concerned "they could go to sleep".

Our solution dees not reflect this at all: we keep the processes busy
setting and inspecting common variables all ths time, as if no price has to

be paid for this activity. But if our implementation -i.e. the ways in which

e means by which these processes are carried out- is such, that "sleeping"

| ParProg20 B1

Concurrency &

EWD123 ~ 27 Synchronization
Sven Koéhler
is a less expensive activity than this busy way of waiting, then we are Chart 19

fully justified (now also from an economic paint of view) to call our

solution misleading.

Cooperating Sequential Processes [Dijkstral965] ﬂ Hasso

. Platt
Binary and General Semaphores Institut

= Find a solution to allow waiting sequential processes to sleep

= Special purpose integer called semaphore, two atomic operations

wait (S):
o P-operation: Decrease value of its argument semaphore by 1, while (S <= 0);
“wait” if the semaphore is already zero S——:
o V-operationi Incrsase vaI_ue of its argument semaphore by 1, signal (S):
useful as ,,signal“ operation
S++,;
= Solution for critical section shared between N processes
ParProg20 B1
» Original proposal by Dijkstra did not mandate any wakeup order COLC[,r?ency &
Synchronization
o Later debated from operating system point of view Sven Kéhler

o ,Bottom layer should not bother with macroscopic considerations*
Chart 20

Cooperating Sequential Processes [Dijkstral965] Hasso
Example: Binary Semaphore mgﬁtng{

"begin integer free; free:= 1;

parbegin
praocess 1: begin......iiieeen.. end;
Process 2: begiNeeeseacecsascsss end;
process N: begine..eeeiiavaains end;
parend

end"

with the i~th process of the form:

ParProg20 B1
Concurrency &
Synchronization

Sven Kohler

"process i: begin
Lis P(Free); critical section i; V(free);
remainder of cycle i; goto Li

end" .

Chart 21

Cooperating Sequential Processes [Dijkstral965] Hasso
Example: General (Counting) Semaphore Plattner

"begin integer number of queuing portions, number of empty positions,
buffer manipulation;
number of queuing portions:= 0;
number of empty positions:= Nj
buffer manipulation:= 1;

parbegin
producer: begin
again 1: produce next portion;

P(rnumber of empty positions);

P(buffer manipulation);

add portion to buffer;

V{buffer manipulation);

V(number of queuing portions); goto again ! end;

consumer: begin
again 2: P(number of queuing portions);
ParProg20 B1

P(buffer manipulation); c 2
oncurrency

take portion from buffer;
V{buffer manipulation); Synchronization

V(number of ?mpty positions); Sven Koéhler
process portion taken; goto again 2 end

Earend
ead® . Chart 22

W, DIJKSTRA

-

>

https://www.youtube.com/watch?v=6sIlKP2LzbA

Hasso
Plattner
Institut

er
chronization
Imitives

Sven Kohler

Chart 24

Hasso
Dining Philosophers Problem [Dijkstra] H mgg?g{

m Five philosophers work in a college, each philosopher has a room for
thinking

= Common dining room, furnished with a circular table,
surrounded by five labeled chairs

= In the center stood a large bowl of spaghetti, which was constantly

replenished
= When a philosopher gets hungry: O
o Sits on his chair -
o Picks up his own fork on the left Q ‘

o . . & ParProg20 B1
and pIL_mges itin th_e spaghetti, G o Concurrency &
then picks up the right fork . Synchronization

o When finished he put down both forks @ - ‘ Sven Kohler
and gets up

o May wait for the availability of the second fork Chart 25

Hasso
Dining Philosophers Problem [Dijkstra] ﬂﬁliﬁ?ﬁ{

» Idea: Shared memory synchronization has different standard issues
= Philosophers as tasks, forks as shared resource
= Explanation of the deadly embrace (deadlock) and starvation
= How can a deadlock happen ?
o All pick the left fork first and wait for the right
= How can a live-lock (starvation) happen ?
o Two fast eaters, sitting in front of each other
= Ideas for solutions

o Waiter solution (central arbitration) ParProg20 B1

o Lefty-righty approach Concurrency &
Synchronization
Sven Koéhler

Chart 26

Hasso
Possible Solution: Lefty-Righty-Approach E attner

» PHILn is a righty (is the only one starting with the right fork)
o Case 1: Has right fork, but left fork is held by left neighbor

- Left neighbor will put down both forks when finished, so there is a
chance

- PHIL~ might always be interrupted before eating (starvation), but no
deadlock of all participants occurs

o Case 2: Has no fork
- Right fork is captured by right neighbor

- In worst case, lock spreads to all but
one righty

m Proof by Dijkstra shows deadlock freedom,
but still starvation problem

ParProg20 B1
Concurrency &
Synchronization

Sven Kohler

Chart 27

Hasso
Coffman Conditions [Coffman1970] H m?ﬁti?ftr

m 1970. E.G. Coffman and A. Shoshani. : Coffman Conditions
Sequencing tasks in multiprocess systems to avoid deadlocks.

o All conditions must be fulfilled to allow a deadlock to happen

o Mutual exclusion condition - Individual resources are available or held by
no more than one task at a time

o Hold and wait condition - Task already holding resources may attempt to
hold new resources

o No preemption condition - Once a task holds a resource, it must
voluntarily release it on its own

o Circular wait condition - Possible for a task to wait for a resource held by
the next thread in the chain ParProg20 B1
Concurrency &

= Avoiding circular wait turned out to be the easiest solution for deadlock Synchronization
avoidance Sven Koéhler

= Avoiding mutual exclusion leads to non-blocking synchronization
o These algorithms no longer have a critical section Chart 28

Coroutines [Conway1963]

s Generalization of the subroutine concept

o Explicit language primitive to indicate transfer of control flow

o Leads to multiple entry points in the routine

» Routines can suspend (yield) and resume in their execution

s Co-routines may always yield new results (=> generators)

o Less flexible version of a coroutine, since yield always returns to caller

s Good for concurrent, not for parallel programming
s Foundation for other concurrency concepts
o Exceptions, iterators, pipes, ...

s Implementation demands stack handling and
context switching

o Portable implementations in C are difficult
o Fiber concept in the operating system is helpful

Design of a Separable

Transition-Diagram Compiler”

MEzLviy E. Conway
Directorate of Computers, USAF
L. G. Hanscom Field, Bedford, Mass.

A COBOL compiler design is presented which is compact
enough to permit rapid, one-pass compilation of a large sub-
set of COBOL on a moderately large computer. Versions of
the same compiler for smaller machines require only two work-
ing tapes plus a compiler tape. The methods given are largely
applicable to the construction of ALGOL compilers.

Hasso
Plattner
Institut

: Coroutines

ParProg20 B1
Concurrency &
Synchronization

Sven Kohler

Chart 29

Coroutines

var := new queue
coroutine produce
loop
while g is not full
create some new items
add the items to g
yield to consume
coroutine consume
loop
while g is not empty
remove some items from g
use the items
Xield to produce

def generator():
for i in range(5):
yield i * 2

for item in generator():
print(item)

Hasso
Plattner
Institut

ParProg20 B1
Concurrency &
Synchronization

Sven Kohler

Chart 30

Monitors [Hoarel1974]

o First formal description of monitor concept, originally invented by
Brinch Hansen in 1972 as part of an OS project

o Operating system has to schedule requests for various resources,
separate schedulers per resource necessary

o Each contains local administrative data, and functions used by
requestors

o Collection of associated data and functionality: monitor

Note: The paper mentions Simula 67 classes (1972)

Functions are the same for all instances, but invocations should be
mutually exclusive

Function execution is the occupation of the monitor
Easily implementable with semaphores

Hasso
Plattner
Institut

: Monitors

ParProg20 B1
Concurrency &
Synchronization

Sven Kohler

Chart 31

Hasso

L . Plattner
Condition Variables Institut
= Function implementation itself might need to wait at some point

o Monitor wait() operation: Issued inside the monitor,
causes the caller to wait and temporarily release the monitor while
waiting for some assertion
o Monitor signal() operation:
Resume one of the waiting callers
= Might be more than one reason for waiting inside the function
o Variable of type condition in the monitor, one for each waiting reason
o Delay operations relate to some specific condition variable:
i i ParProg20 B1
condvar.wait(), condvar.signal() Concurrency &
o Programs are signaled for the condition they are waiting for Synchronization
Sven Kdhler

Hidden implementation as queue of waiting processes

Chart 32

Single Resource Monitor

single resource:monitor
begin busy:Boolean;
nonbusy:condition;
procedure acquire;
begin if busy then nonbusy.wait;
busy := true
end;
procedure release;
begin busy := false;
nonbusy.signal
end;
busy := false; comment inital value;
end single resource;

Hasso
Plattner
Institut

ParProg20 B1
Concurrency &
Synchronization

Sven Kohler

Chart 33

Monitors in Java

= Monitors are part of the Java programming language
s Add synchronized keyword to method, to make access exclusive.

m Object base class provides condition variable functionality -
Object.wait(), Object.notify(), and a wait queue, callable from
synchronized methods

Method ~ [Descripton

void waitQ; |Enter a monitor's wait set until notified by another thread |
void wait(long Enter a monitor's wait set until notified by another thread or timeout
timeout); milliseconds elapses

void wait(long Enter a monitor's wait set until notified by another thread or timeout

timeout, int nanos); |milliseconds plus nanos nanoseconds elapses

Wake up one thread waiting in the monitor's wait set. (If no threads are

void notify(); waiting, do nothing.)

Wake up all threads waiting in the monitor's wait set. (If no threads are

void notifyall0; waiting, do nothing.)

Hasso
Plattner
Institut

ParProg20 B1
Concurrency &
Synchronization

Sven Kohler

Chart 34

Java Example

Hasso
Plattner
Institut

class Queue {
int n;
boolean valueSet = false;
synchronized int get() {
while (!valueSet)
try { this.wait(); }
catch (InterruptedException e) {
valueSet = false;
this.notify () ;
return n;
}
synchronized void put(int n) {
while (valueSet)
try { this.wait(); }
catch (InterruptedException e) {
this.n = n;
valueSet = true;
this.notify () ;
}

class Producer implements Runnable {
Queue q;
Producer (Queue q) {
this.q = q;
new Thread(this, "Producer").start(); }
public void run() {
int 1 = 0;
while(true) { g.put(i++); }
}}

class Consumer implements Runnable { ... }

class App {
public static void main(String args[]) {
Queue g = new Q();
new Producer(q) ;
new Consumer (q) ;

}

ParProg20 B1
Concurrency &
Synchronization

Sven Kohler

— Chart 35

Other High-Level Primitives

= Today: Multitude of high-level synchronization primitives

= Spinlock

O

Perform busy waiting, lowest overhead for short locks

= Reader / Writer Lock

O

O

Special case of mutual exclusion through semaphores

Multiple ,,Reader” tasks can enter the critical section at the same time,
but ,Writer” task should gain exclusive access

Different optimizations possible:
minimum reader delay, minimum writer delay, throughput, ...

Hasso
Plattner
Institut

ParProg20 B1
Concurrency &
Synchronization

Sven Kohler

Chart 37

High-Level Primitives: Concurrent Collections

Hasso
Plattner
Institut

Datastructures with build-in
concurrency support

concurrent_vector Class
o Differences Between concurrent_vector and vector
o Concurrency-Safe Operations
o Exception Safety
concurrent_queue Class
o Differences Between concurrent_queue and queue
o Concurrency-Safe Operations
o lterator Support
concurrent_unordered_map Class
o Differences Between concurrent_unordered_map and unordered_map
o Concurrency-Safe Operations
concurrent_unordered_multimap Class

concurrent_unordered_set Class

concurrent_unordered_multiset Class

Java 7 - java.util.concurrent

Class

AbstractEx Service
ArrayBlockingQueue<E>
ConcurrentHashMap<K,v>
ConcurrentLinkedDeque<E>
ConcurrentLinkedQueue<E>
ConcurrentSkipListMap<K,V>
ConcurrentSkipListSet<E>
CopyOnWriteArrayList<E>
CopyOnWriteArraySet<E>
CountDownLatch
CyclicBarrier
DelayQueue<E extends Delayed>
Exchanger<V>

ExecutorCompletionService<V>

Executors

ForkJoinPool ParProg20 B1
ForkJoinTask<V> Concurrency &
ForkJoinWorkerThread Synchronization
FutureTask<V> ..
LinkedBlockingDeque<E> Sven KOhIer
LinkedBlockingQueue<E>

LinkedTransferQueue<E>

Phaser Chart 38

PriorityBlockingQueue<E>

Hasso
High-Level Primitives: Reentrant Lock ﬂ.‘ﬁzﬁ?&{

s Lock can be obtained several times without locking on itself

» Useful for cyclic algorithms (e.g. graph traversal) and problems were lock
bookkeeping is very expensive

s Reentrant lock needs to remember the locking task(s), which increases
the overhead

ParProg20 B1
Concurrency &
Synchronization

Sven Kohler

Chart 39

High-Level Primitives: Barrier

= All concurrent activities stop there and continue together
m Participants statically defined at compile- or start-time

Hasso
Plattner
Institut

ParProg20 B1
Concurrency &
Synchronization

Sven Kohler

Chart 40

Hasso
. Platt
Lock-Free Programming E Institut

s Lock-free programming as a way of sharing data without maintaining
locks

o Prevents deadlock and live-lock conditions

o Goal:
Suspension of one thread never prevents another thread from making

progress (e.g. synchronized shared queue)
o Blocking by design does not disqualify the lock-free realization
= Algorithms rely on hardware support for atomic operations
o Read-Modify-Write (RMW) operations
. ParProg20 B1
o Compare-And-Swap (CAS) operations Concurrency &
= These operations are typically mapped in operating system API Synchronization

Sven Kohler

Chart 41

Lock-Free Programming

void LockFreeQueue: :push(Node*x newHead)

{
for (33
{
// Copy a shared variable (m_Head) to a local.
Nodex oldHead = m_Head;
// Do some speculative work, not yet visible to other threads.
newHead->next = oldHead;
// Next, attempt to publish our changes to the shared variable.
// If the shared variable hasn't changed, the CAS succeeds and we return.
// Otherwise, repeat.
if (_InterlockedCompareExchange(&m_Head, newHead, oldHead) == oldHead)
return;
}
+

Hasso
Plattner
Institut

ParProg20 B1
Concurrency &
Synchronization

Sven Kohler

Chart 42

Sequential Consistency

int x = 23, y = 0;

bool done = false;

! !

X = 42; while (!done) {}

done = true; y = X;

| |
|

printf("%d\n", y);

y?

Boehm, H. J., & Adve, S. V. (2012). You don't know jack about shared variables or memory models. Communications of the ACM, 55(2), 48-54.

Hasso
Plattner
Institut

ParProg20 B1
Concurrency &
Synchronization

Sven Kohler

Chart 43

Hasso

i i Plattner
Instruction Reordering Institut
int x = 0, y = 0;

X = 2000; printf("%d\t", y);

y = 11; printf("%d\n", x);
Possible Outputs: When is reordering allowed (per Thread)? ParProg20 B1

ynchronization

-0 2000 x86, amd64 Sven Kohler
- 11 2000

ARM, Power v v v v

- 11 0 Chart 44

Sequential Consistency

s Consistency model where the order of
memory operations is consistent with
the source code

o Important for lock-free algorithm
semantic

o Not guaranteed by some processor
architectures (e.g. ARM/Power)

= Java and C++ support the enforcement
of sequential consistency

Hasso
Plattner
Institut

std: :atomic<int> X(0), Y(0);

int rl, r2;

void threadl() {
X.store(1l);
rl = Y.load();

void thread2() {
Y.store(1l);
r2 = X.load();
}

r1 and r2 never become
zero at the same time

o Compiler generates additional memory fences and RMW operations

o Still does not prevent from memory re-ordering due to instruction re-

ordering by the compiler itself

https://en.cppreference.com/w/cpp/atomic/atomic/store

ParProg20 B1
Concurrency &
Synchronization

Sven Kohler

Chart 45

https://en.cppreference.com/w/cpp/atomic/atomic/store

Transactional Memory [C++ JTC1/SC22 Proposal]

void LockFreeQueue: :push(Node*x newHead)

{

atomic_noexcept

{

// begin tranxaction

Nodex oldHead = m_Head;

// Do some speculative work, not yet visible to other threads.
newHead->next = oldHead;

// Next, attempt to publish our changes to the shared variable.
// If the write operation encounters an invalidated cache, fail

oldHead = newHead;
// commit transaction, repeat on fail.

Hasso
Plattner
Institut

ParProg20 B1
Concurrency &
Synchronization

Sven Kohler

Chart 46

Transactional Memory (POWERS)

tm_start:
el tbegin. # TFHAR < addr(tbegint4)
beq fail_handler # if failure go to handler
Iwz 12, tlock # make failure handler’s lock part of transaction’s load footprint
cmpwir2, 1 # some thread in critical section in failure handler?
bne transaction # no, go execute transaction
tabort. # abort transaction and enter failure handler
transaction: # begin transaction if lock not taken

<transactional loads, stores, and other instructions>
tsuspend. # enter suspend region

<Suspended state loads, stores, and other instructions>

- concurrent writes detected
tresume. # resume transaction Via Cache inva“dation

<additional transactional loads, stores, and other instructions>

cpu status flag signals
b tend. # attempt to commit the transaction fa||ed transaction

- fail handler can choose
to use lock elision

» fail_handler:
<determine whether transaction retry possible>
beq tm_start # reattempt if it is reasonable to do so
loop: Iwz 12, tlock # check lock
cmphwir2 1 # taken alreadv?

Le, Hung Q., et al. "Transactional memory support in the IBM POWERS processor." IBM Journal of Research and Development 59.1 (2015): 8-1.

Hasso
Plattner
Institut

ParProg20 B1
Concurrency &
Synchronization

Sven Kohler

Chart 47

8 Simple Rules For Concurrency [Breshears2009]

O

O

O

,Concurrency is still more art than science”

Identify truly independent computations

Implement concurrency at the highest level possible

Plan early for scalability

Code re-use through libraries

Use the right threading model

Never assume a particular order of execution

Use thread-local storage if possible, apply locks to specific data
Don‘t change the algorithm for better concurrency

Hasso
Plattner
Institut

ParProg20 B1
Concurrency &
Synchronization

Sven Kohler

Chart 48

. tt
Literature |n§ti?§tr

[Dijkstral1965]

Dijkstra, E. W. (1965). "Cooperating sequential processes” reprinted in
The origin of concurrent programming (pp. 65-138). Springer, New York

[Lamportl1974]

Lamport, L. (1974). “A new solution of Dijkstra's concurrent programming
problem”. Communications of the ACM, 17(8), 453-455.

[Coffman1970]

Shoshani, A., & Coffman, E. G. (1970, October). “"Sequencing tasks in
multiprocess systems to avoid deadlocks”. In 11th Annual Symposium on

. . _ ParProg20 B1
Switching and Automata Theory (swat 1970) (pp. 225-235). IEEE. Concurrency &

Synchronization
[Hoare1974] Sven Kdhler
Hoare, C. A. R. (1974). “"Monitors: An operating system structuring
concept.” reprinted in The origin of concurrent programming (pp. 272- Chart 49

294). Springer, New York

Hasso
Plattner
Institut

Digital Engineering + Universitat Potsdam

And now for a break and
a cup of macchiato*.

