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POSIX Threads (Pthreads)
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■ Part of the POSIX specification collection, defining an API for thread 
creation and management (pthread.h)

■ Implemented by all (!) Unix-alike operating systems available
□ Utilization of kernel- or user-mode threads depends on 

implementation
■ Groups of functionality (pthread_ function prefix)

□ Thread management - Start, wait for termination, …
□ Synchronization based on mutexes
□ Synchronization based on condition variables
□ Synchronization based on read/write locks and barriers

■ Semaphore API is a separate POSIX specification (sem_ prefix)

POSIX Threads (Pthreads)
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pthread_create()

■ Create new thread in the process, with given routine and argument

pthread_exit(), pthread_cancel()

■ Terminate thread from inside our outside of the thread

pthread_attr_init() , pthread_attr_destroy()

■ Abstract functions to deal with implementation-specific attributes (e.g. 
stack size limit)

■ See discussion in man page about how this improves portability

POSIX Threads

int pthread_create(pthread_t *restrict thread,
const pthread_attr_t *restrict attr, 
void *(*start_routine)(void *), 
void *restrict arg);
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/******************************************************************************
* FILE: hello.c
* DESCRIPTION:
*   A "hello world" Pthreads program.  Demonstrates thread creation and
*   termination.
* AUTHOR: Blaise Barney
* LAST REVISED: 08/09/11
******************************************************************************/

#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#define NUM_THREADS 5

void *PrintHello(void *threadid)
{

long tid; tid = (long)threadid;
printf("Hello World! It's me, thread #%ld!\n", tid);
pthread_exit(NULL);

}

int main(int argc, char *argv[])
{

pthread_t threads[NUM_THREADS];
int rc;
long t;
for (t = 0; t < NUM_THREADS; t++){
printf("In main: creating thread %ld\n", t);
rc = pthread_create(&threads[t], NULL, PrintHello, (void *)t);
if (rc != 0) {
printf("ERROR; return code from pthread_create() is %d\n", rc);
exit(-1);

}
}
/* Last thing that main() should do */
pthread_exit(NULL);

}

ParProg20 B2 
Programming 
Models
Sven Köhler

Chart 6



POSIX Threads
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■ pthread_join(pthread_t thread, void **code)

□ Blocks the caller until the specific thread terminates
□ If thread gave exit code to pthread_exit(), it can be determined here
□ Only one joining thread per target is thread is allowed

■ pthread_detach(pthread_t thread)

□ Mark thread as not-joinable (detached) - may free some system 
resources

■ pthread_attr_setdetachstate(pthread_attr_t *attr, int dstate)

□ Prepare attr block so that a thread can be created in some detach 
state

POSIX Threads: Synchronization
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#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#define NUM_THREADS 4

void *BusyWork(void *t) {
int i; long tid; double result = 0.0; tid = (long)t;
printf("Thread %ld starting...\n",tid);
for (i=0; i < 1000000; i++) {

result = result + sin(i) * tan(i); }
printf("Thread %ld done. Result = %e\n", tid, result);
pthread_exit((void*) t); }

int main (int argc, char *argv[]) {
pthread_t thread[NUM_THREADS]; pthread_attr_t attr; int rc; long t; void *status;

pthread_attr_init(&attr);
pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE);

for (t=0; t < NUM_THREADS; t++) {
printf("Main: creating thread %ld\n", t);
rc = pthread_create(&thread[t], &attr, BusyWork, (void *) t); 
if (rc) {

printf("ERROR; return code from pthread_create() is %d\n", rc);
exit(-1);}}

pthread_attr_destroy(&attr);
for (t=0; t<NUM_THREADS; t++) {

rc = pthread_join(thread[t], &status);
if (rc) {

printf("ERROR; return code from pthread_join() is %d\n", rc);
exit(-1); }

printf("Main: completed join with thread %ld having a status of %ld\n",t, (long) status);}

printf("Main: program completed. Exiting.\n");
pthread_exit(NULL); }
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■ int pthread_mutex_init(pthread_mutex_t *mutex, 
const pthread_mutexattr_t *attr)

□ Initialize new mutex, which is unlocked by default
■ int pthread_mutex_lock(pthread_mutex_t *mutex), 

int pthread_mutex_trylock(pthread_mutex_t *mutex)

□ Blocking / non-blocking wait for a mutex lock
■ int pthread_mutex_unlock(pthread_mutex_t *mutex)

□ Operating system decides about wake-up preference
□ Focus on speed of operation, no deadlock or starvation protection 

mechanism

■ Also support for normal, recursive, and error-check mutex that reports 
double locking (see pthread_mutexattr)

POSIX Threads
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■ Condition variables are always used in conjunction with a mutex
■ Allow to wait on a variable change without polling it in a critical section

■ int pthread_cond_init(pthread_cond_t *cond,
const pthread_condattr_t *attr)

□ Initializes a condition variable

■ int pthread_cond_wait(pthread_cond_t *cond,
pthread_mutex_t *mutex)

□ Called with a locked mutex
□ Releases the mutex and blocks on the condition in one atomic step
□ On return, the mutex is again locked and owned by the caller

■ pthread_cond_signal(), pthread_cond_broadcast()
□ Unblock thread waiting on the given condition variable

POSIX Threads
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pthread_cond_t cond_queue_empty, cond_queue_full; 
pthread_mutex_t task_queue_cond_lock;
int task_available;
/* other data structures here */ 

void main() {
/* declarations and initializations */ 
task_available = 0;
pthread_init(); 
pthread_cond_init(&cond_queue_empty, NULL);
pthread_cond_init(&cond_queue_full, NULL);
pthread_mutex_init(&task_queue_cond_lock, NULL); 
/* create and join producer and consumer threads */
... 

}

void *producer(void *producer_thread_data) {
int inserted; 
while (!done()) {
create_task(); 
pthread_mutex_lock(&task_queue_cond_lock); 
while (task_available == 1) 
pthread_cond_wait(&cond_queue_empty, &task_queue_cond_lock);

insert_into_queue();
task_available = 1; 
pthread_cond_signal(&cond_queue_full);     
pthread_mutex_unlock(&task_queue_cond_lock);

} 

void *consumer(void *consumer_thread_data) {…}
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void *watch_count(void *t) 
{
long my_id = (long)t;
printf("Starting watch_count(): thread %ld\n", my_id);
pthread_mutex_lock(&count_mutex);
while (count < COUNT_LIMIT) {
printf("Thread %ld Count= %d. Going into wait...\n”, my_id,count);
pthread_cond_wait(&count_threshold_cv, &count_mutex);
printf("Thread %ld Signal received. Count= %d\n", my_id,count);
printf("Thread %ld Updating count...\n", my_id,count);
count += 125;
printf("Thread %ld count = %d.\n", my_id, count);

}
printf("watch_count(): thread %ld Unlocking mutex.\n", my_id);
pthread_mutex_unlock(&count_mutex);
pthread_exit(NULL);

}

int main(int argc, char *argv[]) {
pthread_t threads[3]; pthread_attr_t attr; int i, rc; long t1=1, t2=2, t3=3;

pthread_mutex_init(&count_mutex, NULL);
pthread_cond_init (&count_threshold_cv, NULL);
pthread_attr_init(&attr);
pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE);
pthread_create(&threads[0], &attr, watch_count, (void *)t1);
pthread_create(&threads[1], &attr, inc_count, (void *)t2);
pthread_create(&threads[2], &attr, inc_count, (void *)t3);
for (i = 0; i < NUM_THREADS; i++) {
pthread_join(threads[i], NULL);

}
printf ("Main(): Count = %d. Done.\n", NUM_THREADS, count);
pthread_attr_destroy(&attr);
pthread_mutex_destroy(&count_mutex);
pthread_cond_destroy(&count_threshold_cv);
pthread_exit (NULL);
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#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#define NUM_THREADS  3
#define TCOUNT 10
#define COUNT_LIMIT 12

Int count = 0;
pthread_mutex_t count_mutex;
pthread_cond_t count_threshold_cv;

void *inc_count(void *t) {
int i;
long my_id = (long)t;

for (i=0; i < TCOUNT; i++) {
pthread_mutex_lock(&count_mutex);
count++;

if (count == COUNT_LIMIT) {
printf("Thread %ld, count = %d  Threshold reached. ",

my_id, count);
pthread_cond_signal(&count_threshold_cv);
printf("Just sent signal.\n");

}
printf("Thread %ld, count = %d, unlocking mutex\n", 

my_id, count);
pthread_mutex_unlock(&count_mutex);
/* Do some work so threads can alternate on mutex lock */
sleep(1); }

pthread_exit(NULL); 
}
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Windows vs. POSIX Synchronization

Windows POSIX

WaitForSingleObject pthread_mutex_lock()

WaitForSingleObject(timeout==0) pthread_mutex_trylock()

Auto-reset events Condition variables
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■ int pthread_setconcurrency(int new_level)

□ Only meaningful for m:n user-to-kernel threading environments
■ int pthread_setaffinity_np(pthread_t thread, 

size_t cpusetsize, const cpu_set_t *set)
□ Modify processor affinity mask of a thread
□ Forked children inherit this mask
□ Useful for pinning threads explicitely

– Better load balancing, avoid cache pollution
■ int pthread_sigmask(int how, const sigset *set, sigset *oset)

□ Individual threads can mask out signals for explicit responsibilites
■ Int pthread_barrier_wait(pthread_barrier_t *barrier)

□ Barrier implementation, optional part of POSIX standard
(check for _POSIX_BARRIERS macro)

Further PThreads Functionality
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std::async
std::thread

C++11
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■ C++11 specification added support concurrency constructs
■ Allows asynchronous tasks with std::async or std::thread
■ Relies on Callable instance (functions, member functions, lambdas, ...)

C++11

#include <future>
#include <iostream>

void write_message(std::string const& message) {
std::cout<<message;

}

int main() {
auto f = std::async(write_message,
"hello world from std::async\n"); 

write_message("hello world from main\n"); 
f.wait();

}

#include <thread> 
#include <iostream>

void write_message(std::string const& message) {
std::cout<<message;

}

int main() {
std::thread t(write_message,
"hello world from std::thread\n");

write_message("hello world from main\n"); 
t.join();

}
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https://en.cppreference.com/w/cpp/thread

https://en.cppreference.com/w/cpp/thread


■ Launch policy for the async call can be specified
□ Deferred or immediate launch of the activity

■ As for all asynchronous task types, a future is returned
□ Object representing the (future) result of an asynchronous operation, 

allows to block on the result reading
□ Original concept by Baker and Hewitt [1977]

■ A promise object can store a value that is later acquired via a future 
object
□ Separate concept since futures are only readable
□ Can provide a dummy barrier implementation

■ Future == Handle, Promise == Value
■ Promise and future as concept also available in Java 5, Smalltalk, 

Scheme, CORBA, …

C++11: Futures & Promises
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■ Four mutex classes, basic operations in the Lockable concept: 
m.lock(), m.try_lock(), m.unlock()

■ Locking is tricky with exceptions, so C++ offers some high-level 
templates

C++11: Locks and RAII

std::mutex m;
void f(){

std::lock_guard<std::mutex> guard(m);
std::cout << "In f()” << std::endl;

}

int main(){
m.lock();
std::thread t(f);
for(unsigned i=0;i<5;++i){

std::cout<<"In main()"<<std::endl;
std::this_thread::sleep_for(std::chrono::seconds(1));

}
m.unlock();
t.join();

}
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Waiting for events with condition variables avoids polling

C++11: Condition Variables

std::condition_variable the_cv;
std::mutex the_mutex;

void wait_and_pop(my_class& data) {
std::unique_lock<std::mutex> lk(the_mutex);
the_cv.wait(lk,[]() {return !the_queue.empty();});
data = the_queue.front();
the_queue.pop();

}

void push(Data const& data)
{

{
std::lock_guard<std::mutex> lk(the_mutex);
the_queue.push(data);

}
the_cv.notify_one();

}
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while (the_queue.empty()) {
the_cv.wait(lk);

}



■ Lock-free std::atomic<T> types that are free from data races for T =
□ char, schar, uchar, short, ushort, int, uint, long, ulong, char16_t, 

wchar_t, intptr_t, size_t, ...
■ Common member functions

□ is_lock_free()
□ store(), load()
□ exchange()

■ Specialized member functions
□ fetch_add(), fetch_sub(), fetch_and(), fetch_or(), operator++, 

operator+=, ...

C++11 std::atomic
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■ C++11 makes concurrency a first-class language citizen
□ Similar to Java, .NET, and other runtime-based languages
□ (Side note: Fixed Java >=5 memory model with JSR-133) 
□ Unlike any C++ or C version before

■ Demands a memory model of the language
□ What means atomicity? When is a written value visible?
□ Relationship between variables and registers / memory
□ Only chance for the compiler to apply optimizations such as re-

ordering of instructions
□ Irrelevant without a concurrency concept in the language
□ Proper definition leads to portable concurrency behavior

■ C++11 needs to define that for native code !!!

C++11 Memory Model
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https://web.archive.org/web/20131111103613/http://www.hpl.hp.com/personal/Hans_Boehm/c++mm/threadsintro.html
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Example: Atomic objects have store() and load() methods that ensure
sequential consistency
■ Comparable to Java volatile
■ Leads to x86 instructions for memory fencing
■ Fine-grained options to influence access order from threads, which may

allow fence removal by the compiler
■ http://en.cppreference.com/w/cpp/atomic/memory_order

C++11 Memory Model

• A sequenced-before B
• C sequenced-before D
• r1 == r2 == 42 may happen
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Proving C++ Can Be Implemented
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Mathematizing C++ Concurrency

Mark Batty Scott Owens Susmit Sarkar Peter Sewell Tjark Weber
University of Cambridge

Abstract
Shared-memory concurrency in C and C++ is pervasive in systems
programming, but has long been poorly defined. This motivated
an ongoing shared effort by the standards committees to specify
concurrent behaviour in the next versions of both languages. They
aim to provide strong guarantees for race-free programs, together
with new (but subtle) relaxed-memory atomic primitives for high-
performance concurrent code. However, the current draft standards,
while the result of careful deliberation, are not yet clear and rigor-
ous definitions, and harbour substantial problems in their details.
In this paper we establish a mathematical (yet readable) seman-

tics for C++ concurrency. We aim to capture the intent of the cur-
rent (‘Final Committee’) Draft as closely as possible, but discuss
changes that fix many of its problems. We prove that a proposed
x86 implementation of the concurrency primitives is correct with
respect to the x86-TSO model, and describe our CPPMEM tool for
exploring the semantics of examples, using code generated from
our Isabelle/HOL definitions.
Having already motivated changes to the draft standard, this

work will aid discussion of any further changes, provide a cor-
rectness condition for compilers, and give a much-needed basis for
analysis and verification of concurrent C and C++ programs.

Categories and Subject Descriptors C.1.2 [Multiple Data Stream
Architectures (Multiprocessors)]: Parallel processors; D.1.3 [Con-
current Programming]: Parallel programming; F.3.1 [Specifying
and Verifying and Reasoning about Programs]

General Terms Documentation, Languages, Reliability, Stan-
dardization, Theory, Verification

Keywords Relaxed Memory Models, Semantics

1. Introduction
Context Systems programming, of OS kernels, language run-
times, etc., commonly rests on shared-memory concurrency in C
or C++. These languages are defined by informal-prose standards,
but those standards have historically not covered the behaviour of
concurrent programs, motivating an ongoing effort to specify con-
current behaviour in a forthcoming revision of C++ (unofficially,
C++0x) [AB10, BA08, Bec10]. The next C standard (unofficially,
C1X) is expected to follow suit [C1X].
The key issue here is the multiprocessor relaxed-memory be-

haviour induced by hardware and compiler optimisations. The de-
sign of such a language involves a tension between usability and
performance: choosing a very strong memory model, such as se-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
POPL’11, January 26–28, 2011, Austin, Texas, USA.
Copyright c⃝ 2011 ACM 978-1-4503-0490-0/11/01. . . $10.00

quential consistency (SC) [Lam79], simplifies reasoning about pro-
grams but at the cost of invalidating many compiler optimisa-
tions, and of requiring expensive hardware synchronisation instruc-
tions (e.g. fences). The C++0x design resolves this by providing
a relatively strong guarantee for typical application code together
with various atomic primitives, with weaker semantics, for high-
performance concurrent algorithms. Application code that does not
use atomics and which is race-free (with shared state properly pro-
tected by locks) can rely on sequentially consistent behaviour; in
an intermediate regime where one needs concurrent accesses but
performance is not critical one can use SC atomics; and where
performance is critical there are low-level atomics. It is expected
that only a small fraction of code (and of programmers) will use
the latter, but that code —concurrent data structures, OS kernel
code, language runtimes, GC algorithms, etc.— may have a large
effect on system performance. Low-level atomics provide a com-
mon abstraction above widely varying underlying hardware: x86
and Sparc provide relatively strong TSO memory [SSO+10, Spa];
Power and ARM provide a weak model with cumulative barri-
ers [Pow09, ARM08, AMSS10]; and Itanium provides a weak
model with release/acquire primitives [Int02]. Low-level atomics
should be efficiently implementable above all of these, and proto-
type implementations have been proposed, e.g. [Ter08].
The current draft standard covers all of C++ and is rather large

(1357 pages), but the concurrency specification is mostly contained
within three chapters [Bec10, Chs.1, 29, 30]. As is usual for indus-
trial specifications, it is a prose document. Mathematical specifi-
cations of relaxed memory models are usually either operational
(in terms of an abstract machine or operational semantics, typically
involving explicit buffers etc.) or axiomatic, defining constraints
on the relationships between the memory accesses in a complete
candidate execution, e.g. with a happens-before relation over them.
The draft concurrency standard is in the style of a prose description
of an axiomatic model: it introduces various relationships, identify-
ing when one thread synchronizes with another, what a visible side
effect is, and so on (we explain these in §2), and uses them to define
a happens-before relation. It is obviously the result of extensive and
careful deliberation. However, when one looks more closely, it is
still rather far from a clear and rigorous definition: there are points
where the text is unclear, places where it does not capture the in-
tent of its authors, points where a literal reading of the text gives
a broken semantics, several substantial omissions, and some open
questions. Moreover, the draft is very subtle. For example, driven
by the complexities of the intended hardware targets, the happens-
before relation it defines is intentionally non-transitive. The bottom
line is that, given just the draft standard text, the basic question for
a language definition, of what behaviour is allowed for a specific
program, can be a matter for debate.
Given previous experience with language and hardware mem-

ory models, e.g. for the Java Memory Model [Pug00, MPA05,
CKS07, SA08, TVD10] and for x86 multiprocessors [SSZN+09,
OSS09, SSO+10], this should be no surprise. Prose language defi-
nitions leave much to be desired even for sequential languages; for
relaxed-memory concurrency, they almost inevitably lead to ambi-
guity, error and confusion. Instead, we need rigorous (but readable)
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Explicit vs Implicit Threading

Sven Köhler
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process

thread thread thread thread

Explicit Threading
process

thread thread

Implicit Threading

Task1
Task2

Task3
Task4 Task1

Task3

Task2

Task4

Explicit, as part of some sequential code
(OS API, C++/Java/Python Threads)

Thread generation, synchronization, data access:

Implicit, based on a framework 
(OpenMP, OpenCL, Intel TBB, ...)



■ Process: Address space, resource handles, code, set of threads
■ Thread: Control flow

□ Preemptive scheduling by the operating system
□ Can migrate between cores

■ Task: Control flow
□ Modeled as object, statement, lambda expression, 

or anonymous function 
□ Cooperative scheduling, typically by a user-mode library
□ Dynamically mapped to threads from a pool
□ Task model replaces context switch with yielding approach
□ Typical scheduling policy is central queue or work stealing

Threads vs. Tasks

ParProg20 B2 
Programming 
Models
Sven Köhler

Chart 31

: Task
(OpenMP context)



Blumofe, Leiserson, Charles: 
Scheduling Multithreaded Computations by Work Stealing (FOCS 1994)

Problem of scheduling scalable multithreading problems on SMP
Work sharing: When processors create new work, 
the scheduler migrates threads for balanced utilization
Work stealing: Underutilized core takes work from other processor, 
leads to less thread migrations

□ Goes back to work stealing research in Multilisp (1984)
□ Supported in OpenMP implementations, TPL, TBB, Java, Cilk, …

Randomized work stealing: Lock-free ready dequeue per processor
□ Task are inserted at the bottom, local work is taken from the bottom
□ If no ready task is available, the core steals the top-most one from another 

randomly chosen core; added at the bottom
■ Ready tasks are executed, or wait for a processor becoming free

Large body of research about other work stealing variations

Work Stealing
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Specification for C/C++ and Fortran language extension 
■ Portable shared memory thread programming 
■ High-level abstraction of task- and loop parallelism
■ Derived from compiler-directed parallelization of serial language code 

(HPF), with support for incremental change of legacy code
■ Multiple implementations exist
Programming model: Fork-Join-Parallelism
■ Master thread spawns group of threads for limited code region

OpenMP
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OpenMP Stack



OpenMP C/C++ Language Extensions

(public domain, Wikipedia)
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OpenMP Basic Constructs
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#pragma omp contstruct ...
statement; / { block }



Encountering thread for the parallel region generates a set of implicit 
tasks, each with possibly different instructions, assigned to a thread from 
pool
Task execution may suspend at some scheduling point
■ Implicit barrier regions, encountered barrier primitives 
■ Encountered task / taskwait constructs
■ At the end of a task region (with memflush)
Idle worker threads may sleep or spin, depending on library configuration 
(performance issue in serial parts)

OpenMP Parallel Region: #pragma omp parallel
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Environment variables
■ OMP_NUM_THREADS: number of threads during execution, 

upper limit for dynamic adjustment of threads
■ OMP_SCHEDULE: set schedule type and chunk size for parallelized loops of 

scheduling type runtime

Query functions
■ omp_get_num_threads: Number of threads in the current parallel region
■ omp_get_thread_num: Current thread number in the team, master=0
■ omp_get_num_procs: Available number of processors

■ ...

OpenMP Configuration and 
Query Functions
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OpenMP hello world
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#include <omp.h>
#include <stdio.h>

int main (int argc, char * const argv[]) {
#pragma omp parallel
printf("Hello from thread %d, nthreads %d\n",

omp_get_thread_num(), 
omp_get_num_threads());

return 0;
}

>> gcc -fopenmp -o hello_omp hello_omp.c



■ Explicit definition of code blocks being distributable amongst threads with 
section directive

■ Executed in the context of the implicit task
■ Intended for non-iterative parallel work in the code
■ One thread may execute more than one section - runtime decision
■ Implicit barrier at the end of the sections block

□ Can be overriden with the nowait clause

OpenMP Sections

#pragma omp parallel
{
#pragma omp sections [ clause [ clause ] ... ] 
{
[#pragma omp section ]

structured-block1

[#pragma omp section ]

structured-block2         
}}
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Possibilities for distribution of tasks across threads (,work sharing‘)
■ omp sections - Define code blocks dividable among threads

□ Implicit barrier at the end
■ omp for - Automatically divide a loop‘s iterations into tasks

□ Implicit barrier at the end
■ omp single / master - Denotes a task to be executed only by first 

arriving thread resp. the master thread
□ Implicit barrier at the end, 

intended for non-thread-safe activities (I/O)
■ omp task - Explicitly enqueue task (may start immediately, no barrier)

Task scheduling is handled by the OpenMP implementation
Clause combinations possible: #pragma omp parallel for

OpenMP Work Sharing Overview
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■ Shared variable: Name provides access to memory in all tasks
□ Shared by default: global extern variables, static variables, 

variables with namespace scope, variables with file scope
□ shared clause can be added to any omp construct, defines a list of 

additionally shared variables
□ Provides no automatic protection, just marks variables

for handling by runtime environment
■ Private variable: Clone variable in each task, no initialization

□ Use private clause for having one copy per thread

□ Private by default: Local variables in functions called from parallel 
regions, loop iteration variables, section scope variables

□ firstprivate: Initialization with last value before region
□ lastprivate: Result value after region from last loop iteration or 

lexically last section directive

OpenMP Data Sharing
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OpenMP Data Sharing: Example
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#pragma omp parallel for shared(n, a) private(b)
for (int i = 0; i < n; i++)
{

b = a + i;
// ...

}



OpenMP Data Sharing: default clause
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#pragma omp parallel for default(shared)

#pragma omp parallel for default(none) shared(n)

Forces programmer to explicitly state sharing
(compile time error otherwise)



A thread’s temporary view of memory is not required to be consistent with 
memory at all times (weak-ordering consistency)
■ Example: Keeping loop variable in a register for efficiency
■ Compiler needs information when consistent view is demanded
■ Implicit flush on different occasions, such as barrier region
■ In all other cases, read shared variables must be flushed before
#pragma omp flush

OpenMP Consistency Model
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■ for construct: 
Parallel execution of 
iterations 

■ Iteration variable 
must be integer

■ Mapping of threads to 
iterations is controlled 
by schedule clause

■ Has implications on 
exception handling, 
break and continue
primitives

OpenMP Loop Parallelization
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#pragma omp parallel for
for (int i = 0; i < n; i++)
{

result[i] = some_complex_function(i);
}



■ schedule (static, [chunk]):

□ Contiguous ranges of iterations (chunks) are assigned to the threads
□ Low overhead, round robin assignment to free threads
□ Static scheduling for predictable and similar work per iteration
□ Increasing chunk size reduces overhead, improves cache hit rate
□ Decreasing chunk size allows finer balancing of work load

□ Default is one chunk per thread
■ schedule (guided, [chunk])

□ Dynamic schedule, shrinking ranges per step
□ Starts with large block, until minimum chunk size is reached
□ Good for computations with increasing iteration length (e.g. prime sieves)

■ schedule (dynamic, [chunk])

□ Idling threads grab iteration (or chunk) as available (work-stealing)
□ Higher overhead, but good for unbalanced/unpredicable iteration work load

OpenMP Loop Parallelization Scheduling
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Synchronizing with task completion
■ Implicit barrier at the end of single block, removable by nowait clause 
■ #pragma omp barrier  (wait for all other threads in the team)
■ #pragma omp taskwait (wait for completion of child tasks)

OpenMP Synchronization

#include <omp.h>
#include <stdio.h>

int main() {  
#pragma omp parallel
{

printf("Start: %d\n", omp_get_thread_num());
#pragma omp single //nowait
printf("Got it: %d\n", omp_get_thread_num());
printf("Done: %d\n", omp_get_thread_num());

}
return 0;

}
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Synchronizing variable access with #pragma omp critical 

■ Enclosed block is executed by all threads, 
but restricted to one at a time

OpenMP Synchronization

float dot_prod(float* a, float* b, int N) 
{

float sum = 0.0;
#pragma omp parallel for
for(int i = 0; i < N; i++) {

#pragma omp critical
sum += a[i] * b[i];

}
return sum;

}
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Alternative: #pragma omp reduction (op: list)

■ Execute parallel tasks based on private copies of list
■ Perform reduction on results with op afterwards

■ Without race conditions
Supported associative operands: 
+, *, -, ^, bitwise AND, bitwise OR, logical AND, logical OR, min, max

OpenMP Synchronization

#pragma omp parallel for reduction(+:sum)
for(i = 0; i < N; i++) {
sum += a[i] * b[i];

}
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■ Major change with OpenMP 3, allows description of irregular 
parallelization problems
□ Farmer / worker algorithms, recursive algorithms, while loops

■ Definition of tasks as composition of code to execute, 
data environment, and control variables
□ Unit of work that may be deferred
□ Can be nested inside parallel regions and other tasks,

so recursion becomes possible
□ Implicit task generation with parallel and for constructs

■ Tasks run at task scheduling points
■ Runtime may move tasks between threads, or delay them 
■ sections are similar, but mainly work for static partitioning
■ Tied tasks always keep the same thread and follow the scheduling point 

concept, developer may untie tasks

OpenMP Tasks
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■ Parallelize operations on list items
■ Traversal of dynamic structure, so sections do not help
■ Without tasks

□ Poor performance due to abuse of single construct
■ Barrier with taskwait

□ Thread suspends until all direct child tasks are done

OpenMP Tasks Example: List Traversal
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OpenMP Tasks Example: Post-order Tree Traversal
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void traverse( struct node *p ) {
if (p->left)

#pragma omp task
traverse(p->left);

if (p->right)
#pragma omp task
traverse(p->right);

#pragma omp taskwait
process(p);

}

int main (void) {
...
#pragma omp parallel
{

#pragma omp single
traverse (p);

}
...

}

p is firstprivate by default



Typical correctness mistakes
■ Access to shared variables not protected 
■ Use of locks / shared variables without flush
■ Declaring parallel loop variable as shared

Typical performance mistakes
■ Use of critical when atomic would be sufficient
■ Too much work inside a critical section
■ Unnecessary flush / critical

OpenMP Best Practices [Süß & Leopold]
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Süß, M., & Leopold, C. (2005) Common mistakes in OpenMP and how to avoid them. In: International Workshop on OpenMP
(pp. 312-323). Springer, Berlin, Heidelberg.



■ Portable primitives to describe SIMD parallelization
□ Loop vectorization with simd construct
□ Several arguments for guiding the compiler (e.g. alignment)

■ Offloading/Targeting extensions
□ Thread with the OpenMP program executes on the host device, 

an implementation may support other target devices
□ Control off-loading of loops and code regions on such devices

■ New API for using a device data environment
□ OpenMP - managed data items can be moved to the device
□ Threads cannot migrate between devices

■ New primitives for better cancellation / exception handling
■ User-defined reduction operations
■ Allows to model task dependencies (task groups, graphs)

OpenMP 4[.5] (2013-2015)

ParProg20 B2 
Programming 
Models
Sven Köhler

Chart 55



■ Memory allocation models (represent different memory regions)
■ Task reductions
■ Better accelerator support (unification with OpenACC)
■ Improved portability (declare variant, metadirective)
■ Improved C++ support (e.g. iterators)
■ New interfaces for debugging and performance analysis

OpenMP 5 (November 2018)
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#include

Parallel Libraries
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■ Portable C++ library, toolkits for different operating systems
■ Also available as open source version
■ Complements basic OpenMP

□ Loop parallelization, parallel reduction, synchronization, explicit tasks
■ High-level concurrent containers

□ hash map, queue, vector, set
■ High-level parallel operations

□ prefix scan, sorting, data-flow pipelining, deterministic reduce
■ Unfair scheduling approach, to favor threads having data in cache
■ Supported for cache-aware memory allocation
■ Comparable: Microsoft C++ Concurrency Runtime

Intel Threading Building Blocks (TBB)
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■ Intel library with hand-optimized functions for ...
□ Highly vectorized and threaded linear algebra

– Basic Linear Algebra Subprograms (BLAS) API, confirms to de-facto 
standards in high-performance computing

– Vector-vector, matrix-vector, matrix-matrix operations
□ Fast fourier transforms (FFT)

– Single precision, double precision, complex, real, ...
□ Vector math and statistics functions

– Random number generators and probability distributions
– Spline-based data fitting

■ C or Fortran API calls
■ Beats any automated compiler optimization

Intel Math Kernel Library (MKL)
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And now for a break and
a cup of herbal tea*.

*or beverage of your choice 


