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■ Data Level Parallelism

The same operation is applied in parallel to multiple 
units of data.

■ Task Level Parallelism

Multiple operations are executed in parallel.

□ Instruction Level Parallelism (ILP)

... between operations in a task

□ Thread Level Parallelism (TLP)

... between multiple tasks within a workload

□ Request Level Parallelism

... between multiple workloads

Chart 2
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■ ILP arises naturally within a workload

□ Programmers think in terms of a single instruction sequence

■ TLP is explicitly encoded within a workload

□ Programmers designate parallel operations using multiple tasks

Chart 3

Shared-Memory Hardware
Exploiting Instruction Level Parallelism

Why consider ILP in a parallel programming lecture?
Knowledge of common ILP mechanisms and assumptions enables
performance optimization on single-thread granularity!

ILP TLP
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Pipelining

■ Instruction execution phases (e.g. Instruction Fetch, Decode, Execute, 
Memory Access, Writeback) employ distinct hardware units

□ Without pipelining only one unit would operate each clock cycle

■ Pipelining increases throughput by utilizing all units in every cycle

■ Latency per instruction remains the same 

Chart 4

Shared-Memory Hardware
Exploiting Instruction Level Parallelism
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Pipelining Example (Data Hazards)

Chart 5.1

Shared-Memory Hardware
Exploiting Instruction Level Parallelism

Fetch Decode Execute Memory Writeback

R3: 0x00

R2: 0x00

R1: 0x00

R0: 0x00
MOV R0,#1

ADD R1,R0,#3

LD  R2,[R1]

LD  R3,[R0]

ADD R0,R0,R3

LD  R3,[R1]

ADD R1,R0,#3

LD  R2,[R1]

LD  R3,[R0]

ADD R0,R0,R3

LD  R3,[R1]

R0 ← 0x01
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Pipelining Example (Data Hazards)

Chart 5.2

Shared-Memory Hardware
Exploiting Instruction Level Parallelism

Fetch Decode Execute Memory Writeback

MOV R0,#1

ADD R1,R0,#3

LD  R2,[R1]

LD  R3,[R0]

ADD R0,R0,R3

LD  R3,[R1]

LD  R2,[R1]

LD  R3,[R0]

ADD R0,R0,R3

LD  R3,[R1]

R0 ← 0x01

R1 ← R0 + 0x03

R0 ← 0x01
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Cycle 2

R3: 0x00

R2: 0x00

R1: 0x00

R0: 0x00
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Pipelining Example (Data Hazards)

Chart 5.3

Shared-Memory Hardware
Exploiting Instruction Level Parallelism

Fetch Decode Execute Memory Writeback

MOV R0,#1

ADD R1,R0,#3

LD  R2,[R1]

LD  R3,[R0]

ADD R0,R0,R3

LD  R3,[R1]

LD  R3,[R0]

ADD R0,R0,R3

LD  R3,[R1]

R1 ← R0 + 0x03

R2 ← [R1]

R0 ← 0x01

R1 ← 0x04

R0 ← 0x01
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Cycle 3

R3: 0x00

R2: 0x00
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Pipelining Example (Data Hazards)

Chart 5.4

Shared-Memory Hardware
Exploiting Instruction Level Parallelism

Fetch Decode Execute Memory Writeback

MOV R0,#1

ADD R1,R0,#3

LD  R2,[R1]

LD  R3,[R0]

ADD R0,R0,R3

LD  R3,[R1]

ADD R0,R0,R3

LD  R3,[R1]

R2 ← [R1]

R3 ← [R0]

R1 ← 0x04

R2 ← [0x04]

R0 ← 0x01

R1 ← 0x04
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Cycle 4 

R3: 0x00

R2: 0x00

R1: 0x00

R0: 0x01

Forward

ParProg 2019 
Shared-Memory 
Hardware



Pipelining Example (Data Hazards)

Chart 5.5

Shared-Memory Hardware
Exploiting Instruction Level Parallelism

Fetch Decode Execute Memory Writeback

MOV R0,#1

ADD R1,R0,#3

LD  R2,[R1]

LD  R3,[R0]

ADD R0,R0,R3

LD  R3,[R1]LD  R3,[R1]

R3 ← [R0]

R0 ← R0 + R3

R2 ← [0x04]

R3 ← [0x01]

R1 ← 0x04

R2 ← 0xd4

Lukas Wenzel

Cycle 5 

R3: 0x00

R2: 0x00

R1: 0x04

R0: 0x01
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Pipelining Example (Data Hazards)

Chart 5.6

Shared-Memory Hardware
Exploiting Instruction Level Parallelism

Fetch Decode Execute Memory Writeback

MOV R0,#1

ADD R1,R0,#3

LD  R2,[R1]

LD  R3,[R0]

ADD R0,R0,R3

LD  R3,[R1]LD  R3,[R1]

R0 ← R0 + R3

R3 ← [0x01]

R2 ← 0xd4

R3 ← 0xd1

Lukas Wenzel

Cycle 6 

R3: 0x00

R2: 0xd4

R1: 0x04

R0: 0x01
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Pipelining Example (Data Hazards)

Chart 5.7

Shared-Memory Hardware
Exploiting Instruction Level Parallelism

Fetch Decode Execute Memory Writeback

MOV R0,#1

ADD R1,R0,#3

LD  R2,[R1]

LD  R3,[R0]

ADD R0,R0,R3

LD  R3,[R1]

R0 ← R0 + R3

R3 ← [R1]

R0 ← 0xd2

R3 ← 0xd1

Lukas Wenzel

Cycle 7 

R3: 0xd1

R2: 0xd4

R1: 0x04

R0: 0x01
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Pipelining Example (Data Hazards)

Chart 5.8

Shared-Memory Hardware
Exploiting Instruction Level Parallelism

Fetch Decode Execute Memory Writeback

MOV R0,#1

ADD R1,R0,#3

LD  R2,[R1]

LD  R3,[R0]

ADD R0,R0,R3

LD  R3,[R1] R3 ← [R1]

R0 ← 0xd2

R3 ← [0x04]

R0 ← 0xd2

Lukas Wenzel

Cycle 8 

R3: 0xd1

R2: 0xd4

R1: 0x04
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Pipelining Example (Data Hazards)

Chart 5.9

Shared-Memory Hardware
Exploiting Instruction Level Parallelism

Fetch Decode Execute Memory Writeback

MOV R0,#1

ADD R1,R0,#3

LD  R2,[R1]

LD  R3,[R0]

ADD R0,R0,R3

LD  R3,[R1] R3 ← [0x04]

R0 ← 0xd2

R3 ← 0xd4

Lukas Wenzel

Cycle 9 

R3: 0xd1

R2: 0xd4
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Pipelining Example (Data Hazards)

Chart 5.10

Shared-Memory Hardware
Exploiting Instruction Level Parallelism

Fetch Decode Execute Memory Writeback

MOV R0,#1

ADD R1,R0,#3

LD  R2,[R1]

LD  R3,[R0]

ADD R0,R0,R3

LD  R3,[R1] R3 ← 0xd4

Lukas Wenzel
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LD  R0,[#1]

MOV R1,#5

BEQ R0,R1,L1

LD  R1,[#2]

ADD R0,R0,R1

L1:ST  R0,[#4]

Pipelining Example (Control Hazard)

Shared-Memory Hardware
Exploiting Instruction Level Parallelism

Fetch Decode Execute Memory

Branch

Writeback

R1: 0x00

R0: 0x00
MOV R1,#108

BEQ R0,R1,L1

LD  R1,[#2]

ADD R0,R0,R1

L1:ST  R0,[#4]

R0 ← [0x01]

L1:ST  R0,[#4]

Lukas Wenzel
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LD  R0,[#1]

MOV R1,#5

BEQ R0,R1,L1

LD  R1,[#2]

ADD R0,R0,R1

L1:ST  R0,[#4]

Pipelining Example (Control Hazard)

Shared-Memory Hardware
Exploiting Instruction Level Parallelism

Fetch Decode Execute Memory

Branch

Writeback

R1: 0x00

R0: 0x00

BEQ R0,R1,L1

LD  R1,[#2]

ADD R0,R0,R1

L1:ST  R0,[#4]

R0 ← [0x01]

R1 ← 0x6c

R0 ← [0x01]

L1:ST  R0,[#4]

Lukas Wenzel
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LD  R0,[#1]

MOV R1,#5

BEQ R0,R1,L1

LD  R1,[#2]

ADD R0,R0,R1

L1:ST  R0,[#4]

Pipelining Example (Control Hazard)

Shared-Memory Hardware
Exploiting Instruction Level Parallelism

Fetch Decode Execute Memory

Branch

Writeback

R1: 0x00

R0: 0x00

LD  R1,[#2]

ADD R0,R0,R1

L1:ST  R0,[#4]

R1 ← 0x6c

R1 – R0 = 0: L1

R0 ← [0x01]

R1 ← 0x6c

L1:ST  R0,[#4]

R0 ← 0x6c

Lukas Wenzel
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LD  R0,[#1]

MOV R1,#5

BEQ R0,R1,L1

LD  R1,[#2]

ADD R0,R0,R1

L1:ST  R0,[#4]

Pipelining Example (Control Hazard)

Shared-Memory Hardware
Exploiting Instruction Level Parallelism

Fetch Decode Execute Memory

Branch

Writeback

R1: 0x00

R0: 0x6c

ADD R0,R0,R1

L1:ST  R0,[#4]

R1 – R0 = 0: L1

R1 ← [0x02]

R1 ← 0x6c

0x6c-0x6c=0: L1

R1 ← 0x6c

L1:ST  R0,[#4]

R0 ← 0x6c

Lukas Wenzel
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LD  R0,[#1]

MOV R1,#5

BEQ R0,R1,L1

LD  R1,[#2]

ADD R0,R0,R1

L1:ST  R0,[#4]

Pipelining Example (Control Hazard)

Shared-Memory Hardware
Exploiting Instruction Level Parallelism

Fetch Decode Execute Memory

Branch

Writeback

R1: 0x6c

R0: 0x6c

L1:ST  R0,[#4]

R1 ← [0x02]

R0 ← R0 + R1

0x6c-0x6c=0: L1

R1 ← [0x02]

R1 ← 0x6c

TRUE: L1

L1:ST  R0,[#4]

Lukas Wenzel
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LD  R0,[#1]

MOV R1,#5

BEQ R0,R1,L1

LD  R1,[#2]

ADD R0,R0,R1

L1:ST  R0,[#4]

Pipelining Example (Control Hazard)

Shared-Memory Hardware
Exploiting Instruction Level Parallelism

Fetch Decode Execute Memory

Branch

Writeback

R1: 0x6c

R0: 0x6c

R0 ← R0 + R1

[0x04] ← R0 

R1 ← [0x02]

R0 ← 0x6c+0x12

TRUE: L1

R1 ← 0x12

[0x04] ← R0

Lukas Wenzel

Chart 6.6
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LD  R0,[#1]

MOV R1,#5

BEQ R0,R1,L1

LD  R1,[#2]

ADD R0,R0,R1

L1:ST  R0,[#4]

Pipelining Example (Control Hazard)

Shared-Memory Hardware
Exploiting Instruction Level Parallelism

Fetch Decode Execute Memory

Branch

Writeback

R1: 0x6c

R0: 0x6c

[0x04] ← R0 [0x04] ← R0

Lukas Wenzel
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LD  R0,[#1]

MOV R1,#5

BEQ R0,R1,L1

LD  R1,[#2]

ADD R0,R0,R1

L1:ST  R0,[#4]

Pipelining Example (Control Hazard)

Shared-Memory Hardware
Exploiting Instruction Level Parallelism

Fetch Decode Execute Memory

Branch

Writeback

R1: 0x6c

R0: 0x6c

[0x04] ← R0 [0x04] ← 0x6c[0x04] ← R0

Lukas Wenzel

Chart 6.8 

Cycle 8 

ParProg 2019 
Shared-Memory 
Hardware



LD  R0,[#1]

MOV R1,#5

BEQ R0,R1,L1

LD  R1,[#2]

ADD R0,R0,R1

L1:ST  R0,[#4]

Pipelining Example (Control Hazard)

Shared-Memory Hardware
Exploiting Instruction Level Parallelism

Fetch Decode Execute Memory

Branch

Writeback

R1: 0x6c

R0: 0x6c

[0x04] ← 0x6c [0x04] ← 0x6c

Lukas Wenzel
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LD  R0,[#1]

MOV R1,#5

BEQ R0,R1,L1

LD  R1,[#2]

ADD R0,R0,R1

L1:ST  R0,[#4]

Pipelining Example (Control Hazard)

Shared-Memory Hardware
Exploiting Instruction Level Parallelism

Fetch Decode Execute Memory

Branch

Writeback

R1: 0x6c

R0: 0x6c

[0x04] ← 0x6c

Lukas Wenzel
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Pipelining Problems

■ Data Hazard: Instruction requires operand that is not yet written back, 
Solutions:

□ Forwarding: Shortcut writeback path and transfer operands directly 
from intermediate stage

□ Generate Bubbles : Insert NOPs and halt preceeding stages until 
operand is available

■ Control Hazard: Conditional branches may divert instruction stream, 
subsequent Fetches depend on branch completion, Solutions:

□ Generate Bubbles: Fetch stage halts after issuing a branch inserting 
NOPs, continues after branch target is computed

□ Branch Prediction: Fetch stage predicts branch target and continues 
issuing instructions, on misprediction all intermediate instructions are 
flushed Chart 7

Shared-Memory Hardware
Exploiting Instruction Level Parallelism
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Superpipelining

■ Finer subdivision of stages (~ 20-30) decreases combinatorial path depth 
to achieve higher clock frequencies

□ Approach taken with Intel NetBurst microarchitecture, introduced 
2000 and abandoned in 2008 due to Power Wall

□ Control Hazards can degrade performance towards that of a coarser 
pipeline (relies on accurate Branch Predictor)

Chart 8

Shared-Memory Hardware
Exploiting Instruction Level Parallelism

E1F1 M1D1 W1F2 F3 D2 D3 E2 E3 M2 M3 W2 W3

E1F1 M1D1 W1F2 F3 D2 D3 E2 E3 M2 M3 W2 W3

E1F1 M1D1 W1F2 F3 D2 D3 E2 E3 M2 M3 W2 W3
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Superscalar Architecture

■ Scalar pipelines can not exceed 1 IPC (instruction per cycle)

➢ Duplicate execution units to handle more than one independent 
instruction per cycle

Instructions are issued if no previous instruction is blocked and 
dependencies are met (operands and execution unit available)

■ Frontend: Instruction Fetch and Decode

□ Can be duplicated to supply multiple decoded instructions per cycle, 
as all instructions are independent at that stage

■ Issue Queue: Schedules decoded instructions for execution

■ Backend: Registers and various execution units (EU)

□ Fixed-Point units (FXU), Load-Store units (LSU), Floating-Point Units 
(FPU), Branch Units (BU)

Chart 9

Shared-Memory Hardware
Exploiting Instruction Level Parallelism
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Superscalar Architecture

Chart 10.1

Shared-Memory Hardware
Exploiting Instruction Level Parallelism

Fetch Decode Issue

LSU

FXU0

FXU1

FPU
Register
File

BU

Memory
Subsystem
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Superscalar Architecture

Chart 10.2

Shared-Memory Hardware
Exploiting Instruction Level Parallelism

Fetch Decode Issue

LSU

FXU0

FXU1

FPU
Register
File

BU

Memory
Subsystem
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Superscalar Architecture

Chart 10.3

Shared-Memory Hardware
Exploiting Instruction Level Parallelism

Fetch Decode Issue

LSU

FXU0

FXU1

FPU
Register
File

BU

Memory
Subsystem
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Superscalar Architecture

Chart 10.4

Shared-Memory Hardware
Exploiting Instruction Level Parallelism

Fetch Decode Issue

LSU

FXU0

FXU1

FPU
Register
File

BU

Memory
Subsystem

Lukas Wenzel

04

05

06

07
00

01

02

03

Cycle 4 

ParProg 2019 
Shared-Memory 
Hardware



Superscalar Architecture

Chart 10.5

Shared-Memory Hardware
Exploiting Instruction Level Parallelism

Fetch Decode Issue

LSU

FXU0

FXU1

FPU
Register
File

BU

Memory
Subsystem
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Superscalar Architecture

Chart 10.6

Shared-Memory Hardware
Exploiting Instruction Level Parallelism

Fetch Decode Issue

LSU

FXU0

FXU1

FPU
Register
File

BU

Memory
Subsystem
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Superscalar Architecture

Chart 10.7

Shared-Memory Hardware
Exploiting Instruction Level Parallelism

Fetch Decode Issue

LSU

FXU0

FXU1

FPU
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File
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Superscalar Architecture

Chart 10.9

Shared-Memory Hardware
Exploiting Instruction Level Parallelism

Fetch Decode Issue
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Superscalar Architecture

Chart 10.10

Shared-Memory Hardware
Exploiting Instruction Level Parallelism

Fetch Decode Issue

LSU

FXU0

FXU1
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Register
File
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Memory
Subsystem
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Superscalar Architecture

■ Frontend and execution units in backend are usually pipelined

■ In-Order Execution: Issue queue must keep order of instruction stream:

□ Even independent subsequent instructions can not complete before a 
delayed previous instruction (e.g. Load with cache miss) 

□ Entire Backend is stalled for a single stalled execution unit

■ False Dependencies: Write-after-Read conflicts on registers

□ Instruction might wait for destination register to become free, even 
though both operands and execution unit are available already

Chart 11

Shared-Memory Hardware
Exploiting Instruction Level Parallelism

LD  R0,[#10]

ADD R0,R0,#1

ST  R0,[#20]

LD  R0,[#11]

ADD R0,R0,#1

ST  R0,[#21]

?
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Superscalar Optimization: Out of Order

■ Execution must appear sequential,

Instructions can be executed out of program order if:

□ Dependency tracking in issue queue ensures that instruction is only 
executed once operands are available

□ Architecturally visible effects of instruction are held back until 
previous instructions have applied their effects (commit)

➢ Add Reorder Buffer (ROB) to track computed but not yet committed 
results

Chart 12

Shared-Memory Hardware
Exploiting Instruction Level Parallelism
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Superscalar Optimization: Register Renaming

■ Architectural Registers are likely to be reused within the execution 
window, creating false dependencies

□ Add more physical registers to accommodate conflicting usage

➢ Issue Queue maps architectural register numbers to a pool of physical 
registers

Chart 13

Shared-Memory Hardware
Exploiting Instruction Level Parallelism

LD  R0,[#10]

ADD R0,R0,#1

ST  R0,[#20]

LD  R0,[#11]

ADD R0,R0,#1

ST  R0,[#21]

?

LD  R0.0,[#10]

ADD R0.0,R0.0,#1

ST  R0.0,[#20]

LD  R0.1,[#11]

ADD R0.1,R0.1,#1

ST  R0.1,[#21]
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Superscalar Optimization: Speculative Execution

■ Analogous to scalar pipelines:

□ Branch instructions could act as barriers to Issue Queue

□ Efficient alternative: Branch Prediction continues instruction stream 
speculatively, on misprediction speculative instructions are nullified

■ Out of order architecture can accommodate speculative execution:

□ Speculative instructions appear in Reorder Buffer after the branch 
instruction they depend on

□ Once branch commits, dependent instructions can be identified and if 
necessary discarded from Reorder Buffer 

■ Current Branch Predictors can achieve >95% accuracy!

■ Problem: Not all instruction effects are nullified

□ Non-architectural state (e.g. in caches) sometimes can not be and 
usually is not rolled back, opening the way to side-channel attacks

Chart 14

Shared-Memory Hardware
Exploiting Instruction Level Parallelism
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Even though programmers think in terms of sequential 
instruction streams, awareness of instruction level 

parallelism opens optimization potential.

Chart 15

Shared-Memory Hardware
Exploiting Instruction Level Parallelism
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Very-Long-Instruction-Word (VLIW) /

Explicitly-Parallel-Instruction-Computer (EPIC)

■ Alternative to dynamic instruction scheduling in superscalar architectures

□ Requires programmer or compiler to explicitly designate parallelizable 
instructions (static schedule)

➢ Greatly simplifies hardware implementation

➢ Burden on Compilers to statically determine instruction dependencies 
and optimal execution schedules

■ Static analysis can not capture runtime effects like cache behaviour

➢ One static execution schedule may not be optimal in all runtime 
situations

■ Prominent example IA-64 architecture from 2001, not widely adopted

■ Also some embedded architectures, DSPs, older GPUs

Chart 16

Shared-Memory Hardware
Exploiting Instruction Level Parallelism
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Limits of Instruction Level Parallelism

■ ILP in a single instruction stream is limited due to dependencies

■ Larger execution windows quickly become infeasible due to prohibitively 
complex dependency checking logic between executing instructions

➢ ILP exploitation techniques have reached stage of diminishing returns for 
general workloads

Executing multiple independent instruction streams offers new potential for 
parallelization!

Chart 17

Shared-Memory Hardware
Instruction Level Parallelism
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Single-Core Multithreading

■ Threads are the smallest units of parallelism under programmers’ explicit 
control

■ There are different execution schemes for multiple threads on a single 
core:

Chart 18

Shared-Memory Hardware
Thread Level Parallelism

Lukas Wenzel
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Simultaneous Multithreading (SMT)

■ Superscalar Out of Order cores already have much of the logic required 
for SMT (i.e. dependency tracking, register renaming)

■ SMT Support: Duplicate architectural state per hardware thread and tag 
instructions with thread number

➢ Issue Queue gains additional dependency domains

➢ Higher utilization of execution units

Chart 19

Shared-Memory Hardware
Thread Level Parallelism
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SMT never increases but might decrease singlethread 
performance, if execution units are congested by other 

threads.

SMT never decreases but can increase core utilization and 
thus overall throughput.

Chart 20
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Multicore Machines

■ Workloads with high degree of TLP can cause contention of the execution 
units available in a single core

➢ Distribute workload on multiple cores!

■ Cores are self contained (do not share execution units or frontend logic)

■ Cores share access to a memory subsystem

Chart 21

Shared-Memory Hardware
Thread Level Parallelism
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And now for a break and
a cup of Darjeeling.

*or beverage of your choice 



■ Cores initiate two types of memory operations:

□ Instruction Fetches through the Frontend

□ Data Loads/Stores through the Load-Store Units

■ Multiple Cores are serviced by a shared memory subsystem, which 
performs main memory accesses via a memory controller

Chart 23

Shared-Memory Hardware
Memory Consistency Models

Lukas Wenzel

Core 0LSU Frontend

Memory Subsystem

Memory Controller
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■ 1st Simplification: Model memory subsystem as a multiplexer

□ One core at a time has exclusive access to memory controller

■ 2nd Simplification: Disregard Instruction Fetches

□ Fetches are not explicitly initiated by instructions

➢ Not covered by the consistency model

Chart 24

Shared-Memory Hardware
Memory Consistency Models
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Chart 25
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Core 1:

I10 ST #2,[y]
I11 LD R1,[x]

Core 0:

I00 ST #1,[x]
I01 LD R0,[y]

[x]=0   [y]=0

What happens, if multiple (in-order) cores concurrently access 
memory?

➢ Sequential Consistency

■ Multiplexer might switch at arbitrary times

■ The global instruction order <𝑴 arises from 
interleaving the local instruction orders <𝑪𝟎 and <𝑪𝟏

➢ Only guarantee: If two instructions are issued in a 
particular order by the core, they can not be 
reversed in the global memory order

𝑰𝒂 <𝑪𝒙 𝑰𝒃 ⇒ 𝑰𝒂 <𝑴 𝑰𝒃
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Chart 26.1 
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What happens, if multiple (in-order) cores concurrently access 
memory?

➢ Sequential Consistency

<𝑴<𝑪𝟎 <𝑪𝟏

I00 ST #1,[x]

Core 1:

I10 ST #2,[y]
I11 LD R1,[x]

Core 0:

I00 ST #1,[x]
I01 LD R0,[y]

[x]=0   [y]=0

I01 LD R0,[y]

I10 ST #2,[y]

I11 LD R1,[x]

R0 = 2 R1 = 1
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Chart 26.2
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What happens, if multiple (in-order) cores concurrently access 
memory?

➢ Sequential Consistency

<𝑴<𝑪𝟎 <𝑪𝟏

I00 ST #1,[x]

Core 1:

I10 ST #2,[y]
I11 LD R1,[x]

Core 0:

I00 ST #1,[x]
I01 LD R0,[y]

[x]=0   [y]=0

I01 LD R0,[y]

I10 ST #2,[y]

I11 LD R1,[x]

R1 = 1R0 = 0
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Chart 26.3
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What happens, if multiple (in-order) cores concurrently access 
memory?

➢ Sequential Consistency

<𝑴<𝑪𝟎 <𝑪𝟏

I00 ST #1,[x]

Core 1:

I10 ST #2,[y]
I11 LD R1,[x]

Core 0:

I00 ST #1,[x]
I01 LD R0,[y]

[x]=0   [y]=0

I01 LD R0,[y]

I10 ST #2,[y]

I11 LD R1,[x]

R0 = 2 R1 = 0
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Chart 26.4
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What happens, if multiple (in-order) cores concurrently access 
memory?

➢ Sequential Consistency

<𝑴<𝑪𝟎 <𝑪𝟏

I00 ST #1,[x]

Core 1:

I10 ST #2,[y]
I11 LD R1,[x]

Core 0:

I00 ST #1,[x]
I01 LD R0,[y]

[x]=0   [y]=0

I01 LD R0,[y]

I10 ST #2,[y]

I11 LD R1,[x]

R0 = 0 R1 = 0

𝑰𝟎𝟎 <𝑪𝟎 𝑰𝟎𝟏 𝐜𝐨𝐧𝐭𝐫𝐚𝐝𝐢𝐜𝐭𝐬 𝑰𝟎𝟏 <𝑴 𝑰𝟎𝟎

ParProg 2019 
Shared-Memory 
Hardware



Excursion: Write Buffers

■ Load instructions must wait for results from memory

■ Store instructions produce no results for subsequent instructions

➢ LSU does not need to wait for an issued Store instruction to complete

■ This optimization is implemented using Write Buffers, i.e. FIFO memories 
storing address and data of pending Store operations

■ To maintain in-order illusion, subsequent Loads to addresses present in 

Write Buffer must return most recent buffered data (Bypass)

Chart 27.1

Shared-Memory Hardware
Memory Consistency Models
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Core 0:

I00 ST #1,[x]
I01 LD R0,[y]
I02 ST #2,[y]
I03 LD R1,[x] Memory

[x]=0              [y]=0 

LSU:

Write Buffer
[x] ← 1
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Chart 27.2
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Core 0:

I00 ST #1,[x]
I01 LD R0,[y]
I02 ST #2,[y]
I03 LD R1,[x] Memory

[x]=0              [y]=0 

LSU:

Write Buffer
[x] ← 1R0 ← [y]

R0 ← 0
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Excursion: Write Buffers

■ Load instructions must wait for results from memory

■ Store instructions produce no results for subsequent instructions

➢ LSU does not need to wait for an issued Store instruction to complete

■ This optimization is implemented using Write Buffers, i.e. FIFO memories 
storing address and data of pending Store operations

■ To maintain in-order illusion, subsequent Loads to addresses present in 

Write Buffer must return most recent buffered data (Bypass)
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Core 0:

I00 ST #1,[x]
I01 LD R0,[y]
I02 ST #2,[y]
I03 LD R1,[x] Memory

[x]=0              [y]=0 

LSU:

Write Buffer
[x] ← 1

[y] ← 2

R0 ← 0
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Excursion: Write Buffers

■ Load instructions must wait for results from memory

■ Store instructions produce no results for subsequent instructions

➢ LSU does not need to wait for an issued Store instruction to complete

■ This optimization is implemented using Write Buffers, i.e. FIFO memories 
storing address and data of pending Store operations

■ To maintain in-order illusion, subsequent Loads to addresses present in 

Write Buffer must return most recent buffered data (Bypass)
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Core 0:

I00 ST #1,[x]
I01 LD R0,[y]
I02 ST #2,[y]
I03 LD R1,[x] Memory

[x]=0              [y]=0 

LSU:

Write Buffer

[x] ← 1
[y] ← 2

R1 ← [x]

R0 ← 0

Bypass
R1 ← 1
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Excursion: Write Buffers

■ Load instructions must wait for results from memory

■ Store instructions produce no results for subsequent instructions

➢ LSU does not need to wait for an issued Store instruction to complete

■ This optimization is implemented using Write Buffers, i.e. FIFO memories 
storing address and data of pending Store operations

■ To maintain in-order illusion, subsequent Loads to addresses present in 

Write Buffer must return most recent buffered data (Bypass)
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What happens, if multiple (in-order) cores with write buffers 
concurrently access memory?

➢ Total Store Order

■ Stores I00 and I10 wait in write buffer, while Loads I01 and I11 can proceed

■ Store-Load-Reordering violates Sequential consistency 

➢ Define new consistency model to accommodate write buffers

<𝑴<𝑪𝟎 <𝑪𝟏

I00 ST #1,[x]
Core 1:

I10 ST #2,[y]
I11 LD R1,[x]

Core 0:

I00 ST #1,[x]
I01 LD R0,[y]

[x]=0   [y]=0

I01 LD R0,[y]

I10 ST #2,[y]

I11 LD R1,[x]

R0 = 0 R1 = 0

Violates Sequential Consistency
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Chart 29
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Total Store Order

■ Abbreviation: 𝑰𝒙՚
𝑴
𝑰𝒚 means that consistency model 𝑴 guarantees:

𝑰𝒙 <𝑪 𝑰𝒚 ⇒ 𝑰𝒙 <𝑴 𝑰𝒚

■ Formal description of TSO considers Load and Store instructions 

separately:

□ Maintain Load-Load order: 𝑳𝒂
𝑻𝑺𝑶

𝑳𝒃

□ Maintain Load-Store order: 𝑳𝒂
𝑻𝑺𝑶

𝑺𝒃

□ Maintain Store-Store order: 𝑺𝒂
𝑻𝑺𝑶

𝑺𝒃

□ No clause requiring Store-Load order
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Chart 30
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Total Store Order

■ If required, Store-Load reordering can be explicitly forbidden by 
interposing a Fence instruction

➢ Fence effectively flushes the write buffer before performing any more 
Load instructions

■ Additional clauses to formalize Fence (transitively ensures order between 

preceding and subsequent instructions):

𝑳𝒂
𝑻𝑺𝑶

𝑭 ; 𝑺𝒂
𝑻𝑺𝑶

𝑭

𝑭
𝑻𝑺𝑶

𝑭

𝑭
𝑻𝑺𝑶

𝑳𝒂 ; 𝑭
𝑻𝑺𝑶

𝑺𝒂
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Chart 31
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Total Store Order

■ Widely implemented in architectures like SPARC and x86

■ Missing Store-Load order is not problematic for most programming 

idioms:

□ Example: Guard access to variables using a flag

I10 LD  R0,[f]

I11 BNE R0,#0,I10

I12 LD  R1,[x]

I13 LD  R2,[y]

I00 LD  R0,[x]

I01 ST  #2,[y]

I02 ST  #1,[x] 

I03 ST  #0,[f]

[x]=0   [y]=0   [f]=1

Core 0 Core 1

Initial Memory
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Chart 32

Shared-Memory Hardware
Memory Consistency Models
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Atomic Operations

■ To make flag from previous example a proper lock, the acquire operation 
must atomically check and set it (i.e. using Test and Set instruction, TAS)

■ New instruction type: Read-Modify-Write (RMW)

□ Combination of a Load and subsequent Store to the same address

□ No other accesses to that address may happen in between

■ For consistency model, RMW acts as both Load and Store

➢ SC and TSO maintain order between RMW and any other instruction 

type

■ Possible RMW implementation: Flush write buffer, then lock the memory 
multiplexer not to switch between the Load and Store part of the 

instruction

ParProg 2020 B3 
Shared-Memory 
Hardware



Chart 33

Shared-Memory Hardware
Memory Consistency Models
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Weak Consistency

■ TSO Fence demonstrates explicit request of ordering guarantees by 

programmer

■ Many orderings are not required but enforced by strong consistency 
models like SC and TSO

■ To release optimization potential, define consistency model that gives 
only explicitly requested ordering guarantees

□ Fences indicate required order

■ Only guarantee without Fence is ordering between operations on the 

same address
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Chart 34
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Weak Consistency

■ Formalization:

□ Maintain order of operations on the same address:

𝑳𝒂
𝑾𝑪

𝑳𝒂 ; 𝑳𝒂
𝑾𝑪

𝑺𝒂 ; 𝑺𝒂
𝑾𝑪

𝑳𝒂 ; 𝑺𝒂
𝑾𝑪

𝑺𝒂

□ Force order between operations on different addresses with Fence:

𝑳𝒂
𝑾𝑪

𝑭 ; 𝑺𝒂
𝑾𝑪

𝑭

𝑭
𝑾𝑪

𝑭

𝑭
𝑾𝑪

𝑳𝒃 ; 𝑭
𝑾𝑪

𝑺𝒃
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Chart 35
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Weak Consistency

■ Critical section example:

□ Section consists of I4 and I5

□ Guarded by lock L

I0 LD  R0,[A]

I1 ST  R1,[B]

I2 TAS R8,#1,[L]

I3 BZ  R8,#0,I2

I4 ST  R2,[C]

I5 LD  R3,[D]

I6 ST  #0,[L]

I7 ST  R4,[E]

I8 ST  R5,[F]

acquire(L)

release(L)

FENCE

FENCE
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Chart 36
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Release Consistency

■ Minimum requirement for correct critical section implementation:

□ Instructions in CS execute after acquire()

□ Instructions in CS execute before release()

■ Full Fences for acquire() and release() also ensure:

□ Instructions before CS execute before acquire()

□ Instructions after CS execute after release()

➢ Unnecessary guarantees sacrifice optimization potential!

➢ Instead use half Fences, that order in one, not both directions:

□ Acquire orders itself before subsequent instructions: 𝐴
𝑅𝐶
𝐿𝑎 ; 𝐴

𝑅𝐶
𝑆𝑎

□ Release orders preceding instructions before itself: 𝐿𝑎
𝑅𝐶
𝑅 ; 𝑆𝑎

𝑅𝐶
𝑅

□ Maintain order among Acquire and Release: 𝐴
𝑅𝐶
𝐴 ; 𝐴

𝑅𝐶
𝑅 ;𝑅

𝑅𝐶
𝐴 ; 𝑅

𝑅𝐶
𝑅
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Chart 37
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Release Consistency

■ Acquire and Release semantics can 

be attached to:

□ Regular Fence instructions

□ Load, Store and RMW instructions

➢ Allows acquire(L) and release(L)
to have no ordering effect on 
instructions outside critical section

➢ Or do they?

I0 LD     R0,[A]

I1 ST     R1,[B]

I2 TAS.AQ R8,#1,[L]

I3 BZ     R8,#0,I2

I4 ST     R2,[C]

I5 LD     R3,[D]

I6 ST.RL #0,[L]

I7 ST     R4,[E]

I8 ST     R5,[F]

acquire(L)

release(L) ParProg 2020 B3 
Shared-Memory 
Hardware



Chart 38
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Overview

Sequential 
Consistency

Total Store Order

load(A)

store(B)

acquire(L)+FENCE

store(C)

load(D)

FENCE+release(L)

store(E)

store(F)

Weak Consistency Release 
Consistency

load(A)

store(B)

acquire(L)

store(C)

load(D)

release(L)

store(E)

store(F)

load(A)

store(B)

acquire(L)

store(C)

load(D)

release(L)

store(E)

store(F)

load(A)

store(B)

acquire.AQ(L)

store(C)

load(D)

release.RL(L)

store(E)

store(F) 
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And now for a break and
another cup of Darjeeling.

*or beverage of your choice 



■ Current conception of memory subsystem is inaccurate:

□ Not a multiplexer granting exclusive access to memory controller

□ Instead: Hierarchy of caches striving to reduce memory operations 
reaching levels closer to memory controller

Chart 40

Shared-Memory Hardware
Coherent Cache Hierarchy

Lukas Wenzel

Core 0

Interconnect

LSU Frontend

L1D Cache L1I Cache

L2 Cache

L3 Cache

Memory Controller

Core 1Core 0

Memory Controller

Core 1LSU Frontend

L1D Cache L1I Cache

L2 Cache
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Caches

■ Store copies of recently used main memory regions (cache lines)

□ If present (cache hit) core can operate on cached copy instead of 
main memory

■ Caches are orders of magnitude smaller that main memory 

□ Faster implementation: Lower access latency and higher throughput

■ Resulting performance approaches that of the cache for a high hit ratio

𝐿𝑎𝑡𝑒𝑛𝑐𝑦𝑎𝑣𝑔 = 𝐿𝑎𝑡𝑒𝑛𝑐𝑦𝐶𝑎𝑐ℎ𝑒 ⋅ 𝐻𝑖𝑡𝑅𝑎𝑡𝑖𝑜 + 𝐿𝑎𝑡𝑒𝑛𝑐𝑦𝑀𝑎𝑖𝑛𝑀𝑒𝑚 ⋅ 1 − 𝐻𝑖𝑡𝑅𝑎𝑡𝑖𝑜

➢ Illusion of memory with cache speed and main memory size

■ Requires high hit ratio

➢ Based on temporal and spatial locality
Chart 41

Shared-Memory Hardware
Coherent Cache Hierarchy

Lukas Wenzel
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Cache lines are the 
basic unit of the 
memory subsystem!

Any access (even 
single byte) will fetch 
an entire line (64-128 
byte) into the cache.



Prefetching

■ Technique to improve the cache hit ratio:

Hardware predicts or software indicates cache lines that will be accessed 
in the near future and fetches them proactively.

■ Software: Explicit prefetch instructions like PREFETCHxx (x86) or DCBT
(Data Cache Block Touch, Power)

■ Tradeoff: Aggressive, erroneous or premature prefetching may defeat its 
purpose by evicting still used cache lines or wasting memory bandwidth.

□ Coverage: Ratio of accessed locations that were successfully 
prefetched

□ Accuracy: Ratio between prefetched locations that were and were 
not accessed

Chart 42
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Prefetching

■ Access based Prefetchers observe all memory accesses or only cache 
misses

Each access/miss might trigger a prefetch

Prefetched address is predicted using information associated with 
access/miss (address, program counter, history of addresses or offsets)

▪ Temporal Correlation: Record sequence of accessed addresses

▪ Spatial Correlation: Record data layout of accessed structures 
(relative offsets) 

▪ Stride Prefetcher: Recognizes layouts with fixed relative offsets

■ Execution based Prefetchers analyze instruction stream directly to predict 
locations it might access

Chart 43

Shared-Memory Hardware
Coherent Cache Hierarchy

Lukas Wenzel
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Instructions

Core

Cache

Prefetcher
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Caches

■ Distort global visibility of memory operations by cores!

□ Delayed propagation of Stores to main memory

□ Stale results from Loads by missing updates to main memory

■ Order is restored by establishing the Single-Writer-Multiple-Reader 
(SWMR) invariant between caches:

□ A cache can only service a Store operation on a cache line if no other 
cache can service Loads or Stores from the same cache line

□ Multiple caches can service Loads on their local cache line copies as long 
as no Stores to the same cache line occur

■ Caches obeying the SWMR invariant are called coherent

□ Mechanisms to maintain the SWMR invariant are coherence protocols Chart 44
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MSI Coherence Protocol

■ MSI is a simple coherence protocol, based on a state machine

■ Seen from a particular cache, each cache line is in one of three states:

□ Invalid: The cache line is not present in the cache, this cache may 
service neither Load nor Store operations

□ Shared: The cache line is present in this and probably other caches, 
this cache may service Load operations

□ Modified: The cache line is only present in this cache, this cache may 
service Load and Store operations

Chart 45
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MSI Coherence Protocol

■ Transitions may occur for two reasons:

1) Required for servicing Loads or Stores from core

2) Reacting to observed behavior of other caches (Snooping)

■ Examples:

1) If the cache needs to service a Write operation on a Shared line, it 
must broadcast an invalidation message to all caches to ensure it 
holds the only copy before marking its line Modified. 

2) If a cache holds a Modified line, it must snoop accesses to this line by 
other caches, if necessary write back its updates to memory and 
transition to Invalid state.

Chart 46
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MSI Coherence Protocol

Chart 47.1
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Core 0:

LD R0,[x]

ST #1,[x]

ST #2,[y]

Cache 0: Cache 1:

Core 1:

LD R0,[x]

LD R1,[y]

[x]=0 [y]=0

[x]=0                Shared



MSI Coherence Protocol

Chart 47.2
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Core 0:

LD R0,[x]

ST #1,[x]

ST #2,[y]

Cache 0: Cache 1:

Core 1:

LD R0,[x]

LD R1,[y]

[x]=0 [y]=0

[x]=0                Shared [x]=0                Shared



MSI Coherence Protocol

Chart 47.3
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Core 0:

LD R0,[x]

ST #1,[x]

ST #2,[y]

Cache 0: Cache 1:

Core 1:

LD R0,[x]

LD R1,[y]

[x]=0 [y]=0

Invalidate
[x]=0               Invalid[x]=1              Modified



MSI Coherence Protocol

Chart 47.4
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Core 0:

LD R0,[x]

ST #1,[x]

ST #2,[y]

Cache 0: Cache 1:

Core 1:

LD R0,[x]

LD R1,[y]

[x]=0 [y]=0

[x]=0               Invalid[x]=1              Modified

[y]=2              Modified



MSI Coherence Protocol

Chart 47.5
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Core 0:

LD R0,[x]

ST #1,[x]

ST #2,[y]

Cache 0: Cache 1:

Core 1:

LD R0,[x]

LD R1,[y]

[x]=0

[x]=0               Invalid[x]=1              Modified

[y]=2                Shared

[y]=2

[y]=2               Invalid
Snoop



A coherent cache hierarchy reestablishes sequential 
consistency equivalent to the original multiplexer model!

Chart 48
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Can be accessed from the Uni Potsdam network at:

https://www.morganclaypool.com/toc/cac/1/



And now for a break and
the last cup of Darjeeling.

*or beverage of your choice 


