
Parallel Programming and Heterogeneous Computing
Heterogeneous Computing with GPUs and CUDA

Max Plauth, Sven Köhler, Felix Eberhardt, Lukas Wenzel and Andreas Polze
Operating Systems and Middleware Group

■ >25% of HPC systems in the Top500 (Nov ’18) are powered by GPUs Max Plauth

ParProg20 C2
GPUs

Chart 2

Why GPUs?

[https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/, https://www.top500.org/statistics/list/]

AVX2

AVX-512

AVX

Max Plauth

ParProg20 C2
GPUs

Chart 3

A Brief History of GPUs

•1980s-1990s; configurable, not programmable;
first APIs (DirectX, OpenGL); Vertex Processing

Fixed Function
Graphic Pipelines

•Since 2001: APIs for Vertex Shading, Pixel Shading and
texture manipulation; DirectX9

Programmable Real-
Time Graphics

•2006: NVIDIAs G80; unified processors arrays;
three programmable shading stages; DirectX10

Unified Graphics and
Computing Processors

•Compute problem as native graphic operations;
algorithms as shaders; data in textures

General Purpose GPU
(GPGPU)

•CUDA (2007) / OpenCL (2009); programmable shaders;
load and store instructions; barriers; atomicsGPU Computing

Max Plauth

ParProg20 C2
GPUs

Chart 4

Recap: Data vs. Task Parallelism

Max Plauth

ParProg20 C2
GPUs

Chart 5

GPU Hardware: Discrete GPUs

[Icons by srip, monkik, and Smashicons from www.flaticon.com]

~1.5TB/s
(NVIDIA A100)

~410GB/s
(AMD Zen 2)

~32GB/s
(PCIe 4)

CPU

Max Plauth

ParProg20 C2
GPUs

Chart 6

GPU Hardware: Integrated GPUs

[Icons by srip, monkik, and Smashicons from www.flaticon.com]

137GB/s
(Jetson AGX)

CPU
GPU

Max Plauth

ParProg20 C2
GPUs

Chart 7

Hardware: NVIDIA GA100 Full GPU with 128 SMs

Max Plauth

ParProg20 C2
GPUs

Chart 8

Hardware: NVIDIA GA100 SM

Max Plauth

ParProg20 C2
GPUs

Chart 9

Hardware: AMD RDNA/Navi GPU

Max Plauth

ParProg20 C2
GPUs

Chart 10

Hardware: Intel Iris Gen11 iGPU

Max Plauth

ParProg20 C2
GPUs

Chart 11

Hardware: ARM Mali 2nd Gen Valhall iGPU

■ Current GPU designs are based on many superscalar "cores"

■ "Cores" are grouped in SMs/Compute Engines/Subslices/Shader Cores/...

■ Unlike CPUs, GPU "cores" cannot operate independently from each other

□ "Cores" share control-flow logic and operate in warps / wavefronts

□ Number of "cores" per warp / wavefront varies from vendor to vendor

□ Branching within a warp results in serialized execution à expensive

■ Memory bandwidth increases, but latency can hardly be improved

□ Large register file / L1$ required to support many active threads
□ #active threads >> #cores required for latency hiding

■ Complex memory hierarchy must be managed by software explicitly

Max Plauth

ParProg20 C2
GPUs

Chart 12

(Vendor independent) properties of GPUs

■ Three key abstractions
□ A hierarchy of threads groups
□ Shared memories
□ Barrier Synchronization

■ “Foster says hello!”
□ Partitioning/Communication:

– Each thread performs smallest possible task
□ Agglomeration/Mapping:

– Coarse tasks are performed by blocks of threads
– Blocks enable scalability from entry level to enthusiast level GPUs Max Plauth

ParProg20 C2
GPUs

Chart 13

CUDA Programming Model

■ „a routine compiled for high throughput accelerators“ (Wikipedia)

■ An instance of a kernel function is executed once per thread

■ Indices determine what portion of work is performed by a kernel instance

■ Think of kernels as the body of an inner loop

Max Plauth

ParProg20 C2
GPUs

Chart 14

CUDA Programming Model: Kernels

void
serial_mul(const float* a,

const float* b,
float* c,
int n)

{

for(int i = 0; i<n; i++)

c[i] = a[i] * b[i];

}

__global__ void
mul(__global__ const float* a,

__global__ const float* b,
__global__ float* c)

{

int id = threadIdx.x +
blockIdx.x * blockDim.x;

c[id] = a[id] * b[id];

}

■ Each thread only performs light work
□ e.g. performs an operation on a single array element

■ Threads are grouped in blocks
□ Threads are identified using the built-in,

3-component index vector threadIdx

□ The dimensions of the thread blocks are
accessible via the blockDim vector

■ All blocks are organized in the grid
□ Blocks are identified using the built-in,

3-component index vector blockIdx Max Plauth

ParProg20 C2
GPUs

Chart 15

CUDA Programming Model: Thread Hierarchy

■ Register File
□ Private to each thread
□ Fastest memory, several variables

■ Shared Memory
□ Shared per block
□ Fast memory, several kilobytes
□ Managed manually

■ Global Memory
□ Shared per process
□ Slowest memory, several gigabytes

Max Plauth

ParProg20 C2
GPUs

Chart 16

CUDA Programming Model: Memory Hierarchy

■ Single Instruction, Multiple Threads
□ Each thread executes the same code

■ A thread block is executed on one streaming multiprocessor (SM)
□ Synchronization and communication is only possible within blocks
□ Inter-block data exchange is only possible via global memory

■ Warps: a SM schedules/executes threads in units of 32 threads
□ Warps (used to) share a single program counter amongst all 32 threads
□ Divergent code results in serialized execution
□ Synchronization in divergent code will lead to deadlocks Max Plauth

ParProg20 C2
GPUs

Chart 17

CUDA Execution Model

■ Single-Source Approach:
□ Host and device code can be mixed in the same source files

■ CUDA 10: superset of ISO C++14 with additions including
□ Function Execution Space Specifiers

– __global__, __device__, __host__, __noinline__, __forceinline__

□ Variable Memory Space Specifiers
– __device__, __constant__, __shared__, __managed__, __restrict__

□ Built-in Variables
– threadIdx, blockDim, blockIdx, gridDim, warpSize

□ Synchronization Functions
– cudaDeviceSynchronize(), cudaStreamSynchronize(), …

□ Memory Management
– cudaMalloc(), cudaFree(), cudaMallocHost(), cudaFreeHost() …

Max Plauth

ParProg20 C2
GPUs

Chart 18

CUDA C++

1. Allocate host memory (and prepare input data)
2. Allocate device memory
3. Copy input data from host memory to device memory
4. Launch Kernel
5. Copy result from device memory to host memory
6. Free resources

Max Plauth

ParProg20 C2
GPUs

Chart 19

Simple CUDA Code Workflow

■ Kernel body is instantiated once for each thread
□ Each thread has a unique index

Max Plauth

ParProg20 C2
GPUs

Chart 20

Example: Vector Addition CUDA Kernel

Code that actually executes on the GPU

__global__ void vectorAdd(__global__ const float *a,
__global__ const float *b,
__global__ float *c)

{
int i = blockDim.x * blockIdx.x + threadIdx.x;

c[i] = a[i] + b[i];

}

Max Plauth

ParProg20 C2
GPUs

Chart 21

Example: Vector Addition Host Code

// Error code to check return values for CUDA calls
cudaError_t err = cudaSuccess;

// Print the vector length to be used, and compute its size
int numElements = 50000;
size_t size = numElements * sizeof(float);

// Allocate the host input vector A, B, and C
float *h_A = (float *)malloc(size);
float *h_B = (float *)malloc(size);
float *h_C = (float *)malloc(size);

// Initialize the host input vectors
for (int i = 0; i < numElements; ++i)
{

h_A[i] = rand()/(float)RAND_MAX;
h_B[i] = rand()/(float)RAND_MAX;

}

// Allocate the device input vector A
float *d_A = NULL;
float *d_B = NULL;
float *d_C = NULL;
err = cudaMalloc((void **)&d_A, size);
err = cudaMalloc((void **)&d_A, size);
err = cudaMalloc((void **)&d_A, size);

// Copy the host input vectors A and B to device memory
err = cudaMemcpy(d_A, h_A, size, cudaMemcpyHostToDevice);
err = cudaMemcpy(d_B, h_B, size, cudaMemcpyHostToDevice);

// Launch the Vector Add CUDA Kernel
int threadsPerBlock = 256;
int blocksPerGrid =(numElements + threadsPerBlock - 1) /
threadsPerBlock;
vectorAdd<<<blocksPerGrid, threadsPerBlock>>>(d_A, d_B, d_C,
numElements);
err = cudaGetLastError();

// Copy the device result back to host memory.
err = cudaMemcpy(h_C, d_C, size, cudaMemcpyDeviceToHost);

// Free device global memory
err = cudaFree(d_A);
err = cudaFree(d_B);
err = cudaFree(d_C);

// Free host memory
free(h_A);
free(h_B);
free(h_C);

return 0;

■ Vendor-dependent
■ Exposes hardware features
■ GPUs only

■ Vendor-independent standard
■ No direct access to hardware
■ CPUs, GPUs, DSPs, FPGAs...

Max Plauth

ParProg20 C2
GPUs

Chart 22

A brief comparison: CUDA vs. OpenCL

Max Plauth

ParProg20 C2
GPUs

Chart 23

Terminology: CUDA vs. OpenCL

Term CUDA OpenCL

grid NDRange

block work-group

thread work-item

warp sub-group

Thread index threadIdx.x get_local_id(0)

Group index blockIdx.x get_group_id(0)

Group dimension blockDim.x get_local_size(0)

Thread count gridDim.x get_global_size(0)

Kernel Launch <<< >>> clEnqueueNDRangeKernel

Global Memory __global__ __global

Group Memory __shared__ __local

Thread Local Storage __local__ __private

Constant Memory __constant__ __constant

Max Plauth

ParProg20 C2
GPUs

Chart 24

Best Practices for Performance Tuning

• Asynchronous, Recompute, SimpleAlgorithm Design

• Chaining, Overlap Transfer & ComputeMemory Transfer

• Avoid Divergent BranchingControl Flow

• Local Memory as Cache, rare resourceMemory Types

• Coalescing, Bank ConflictsMemory Access

• Work-Group Size, Work / Work-ItemSizing

• Shifting, Fused Multiply, Vector TypesInstructions

• Native Math Functions, Build OptionsPrecision

■ Per default, all commands are performed in-order in the default stream

■ Level of concurrency can be increased by using multiple streams,
e.g. for overlapping memory transfers with computation

Max Plauth

ParProg20 C2
GPUs

Chart 25

Performance Tuning:
Overlap Transfer & Compute

■ Streams must be created explicitly
□ cudaCreateStream(), cudaDestroyStream()

■ Asynchronous API functions must be used, with stream as parameter
□ Many functions of the CUDA API exist in sync. and async. versions
□ cudaMemcpy() vs. cudaMemcpyAsync()

■ Kernel launches are always asynchronous
□ Explicit synchronization:cudaDeviceSynchronize() or cudaStreamSynchronize()
□ Implicit synchronization at next sync. call in the same stream, e.g. cudaMemcpy()

Max Plauth

ParProg20 C2
GPUs

Chart 26

Performance Tuning:
Overlap Transfer & Compute

Divergent Branching
■ Flow control instruction (if, switch, do, for, while) can result in

different execution paths
■ Data parallel execution → varying execution paths will be serialized
■ Threads converge back to same execution path after completion

Branch Predication
■ Instructions are associated with a per-thread condition code (predicate)

□ All instructions are scheduled for execution
□ Predicate true: executed normally
□ Predicate false: do not write results, do not evaluate addresses, do

not read operands
■ Compiler may use branch predication for if or switch statements

Max Plauth

ParProg20 C2
GPUs

Chart 27

Performance Tuning:
Divergent Branching and Predication

Shared Memory
■ Memory latency much lower than global memory latency
■ Small, no coalescing problems, prone to memory bank conflicts

Texture Memory
■ 2-dimensionally cached, read-only
■ Can be used to avoid uncoalesced loads

form global memory

Constant Memory
■ Cached, read-only, 64 KB Max Plauth

ParProg20 C2
GPUs

Chart 28

Performance Tuning:
Shared, Texture, and Constant Memory

0 1 2 3

64 65 66 67

128 129 130 131

192 193 194 195

…

…

…

…

Simple Access Pattern
■ The k-th thread accesses the k-th word in a cache

line. Not all threads need to participate.
■ A single 128B L1 cache line is sufficient.

Sequential but Misaligned Access
■ Sequential threads access memory that is

sequential but not aligned with the cache lines,
two 128-byte L1 cache lines will be requested.

Strided Accesses
■ Stride of 2 results in a 50% of Ld/St efficiency
■ Worst case: One word per cache line is used

Max Plauth

ParProg20 C2
GPUs

Chart 29

Performance Tuning:
Memory Coalescing

■ Sequential but Misaligned Access

■ Strided Accesses

Max Plauth

ParProg20 C2
GPUs

Chart 30

Performance Tuning:
Memory Coalescing

__global__ void offset(__global float *a,

const int offset) {

int id = blockDim.x * blockIdx.x +
threadIdx.x + offset;

a[id] += 1;

}

__global__ void stride(__global float *a,

const int stride) {

int id = (blockDim.x * blockIdx.x +
threadIdx.x) * stride;

a[id] += 1;

}

■ „CUDA Toolkit Documentation“. NVIDIA Corporation
https://docs.nvidia.com/cuda/

■ „A history of the NVIDIA Stream Multiprocessor“. Fabien Sanglard,
https://fabiensanglard.net/cuda/index.html

■ Code Examples for Optimization Techniques
□ „Using Shared Memory in CUDA C/C++“. Mark Harris,

https://devblogs.nvidia.com/using-shared-memory-cuda-cc/
□ „How to Access Global Memory Efficiently in CUDA C/C++

Kernels“. Mark Harris, https://devblogs.nvidia.com/how-access-global-
memory-efficiently-cuda-c-kernels/

□ „How to Overlap Data Transfers in CUDA C/C++“. Mark Harris,
https://devblogs.nvidia.com/how-overlap-data-transfers-cuda-cc/

Max Plauth

ParProg20 C2
GPUs

Chart 31

Heterogeneous Computing with GPUs and CUDA
References

https://docs.nvidia.com/cuda/
https://fabiensanglard.net/cuda/index.html
https://devblogs.nvidia.com/using-shared-memory-cuda-cc/
https://devblogs.nvidia.com/how-access-global-memory-efficiently-cuda-c-kernels/
https://devblogs.nvidia.com/how-overlap-data-transfers-cuda-cc/

Thank you
for your attention!

