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Recap
Anatomy of a Workload / MIMD Hardware Taxonomy
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Anatomy of a Workload / MIMD Hardware Taxonomy
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Parallel Machine Models

Early parallel machine models are abstractions of shared memory machines:

■ Parallel Random Access Machine Model (PRAM)

□ Used in many variations in terms of memory access and execution modalities

Later models capture properties of distributed memory machines:

■ Bulk Synchronous Parallel Model (BSP)

■ LogP Model

Recent models focus on memory hierarchy:

■ Universal Parallel Memory Hierarchy (UPMH)

■ Memory LogP, LognP
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Parallel Random Access Machine (PRAM)

Natural extension of the Random Access Machine (RAM) model:

Memory
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Instruction

›

Instruction
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Instruction

Instruction

Instruction

Instruction

›

Instruction

Lockstep

■ Arbitrary amount of memory

■ Constant memory access latency:
Processor can read or write a single memory 
cell per cycle.

■ Arbitrary number of processors

■ Lockstep execution:

Each processor executes any instruction in a 
single cycle of a shared clock.

➢ No synchronization primitives: not 
strictly required by algorithms because 
of lockstep execution
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Parallel Random Access Machine (PRAM)

Memory Access Modalities

Multiple accesses to different addresses can always proceed in the same cycle.

~ Infinite memory bandwidth

Multiple accesses to the same address may cause varying behavior:

›››

Exclusive Read, 
Exclusive Write

EREW

Concurrent Read, 
Exclusive Write

CREW

Exclusive Read, 
Concurrent Write

ERCW

Concurrent Read,
Concurrent Write

CRCW

Multiple processors can read the same address

Multiple 
processors 

can write the 
same address

Algorithms accessing the same address from multiple processors in exclusive mode 
are considered incorrect!

Arbitration Policies:

▪ Common

▪ Arbitrary

▪ Priority

▪ Aggregate (Sum, Max, 
Avg, ...)
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Parallel Random Access Machine (PRAM)

Example: Parallel Sum

■ Sum elements in array 𝐀 𝑵 using a PRAM 
with 𝑵 processors

■ Time complexity 𝕆(𝐥𝐨𝐠𝟐𝑵)

■ Correctness relies on lockstep execution

□ APRAM variant discards the lockstep 
criterion

➢ Would require a barrier after each 
addition

int sum = 0;
for i in 0 to N-1 {

sum += A[i];
}

A[0] A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8] A[9]

p0 p1 p2 p3 p4 p5 p6 p7 p8 p9 mod 21

A[0] A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8] A[9]

mod 22p0 p1 p2 p3 p4 p5 p6 p7 p8 p9

A[0] A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8] A[9]

mod 23p0 p1 p2 p3 p4 p5 p6 p7 p8 p9

A[0] A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8] A[9]

mod 24p0 p1 p2 p3 p4 p5 p6 p7 p8 p9

A[0] A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8] A[9]

for l in 1 to ceil(log2(N)) {
if ((p % 2^l) == 0 &&

(p + 2^(l-1)) < N) {
A[p] += A[p + 2^(l-1)];

}
}

p - Processor ID between 0 and N-1
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[Valiant1990]
Bulk Synchronous Parallel Model (BSP)

■ Intended to bridge the gap between 
computational and network models

Models a distributed system:

■ Processors use local memory and 
execute instructions asynchronously

■ Processors are connected through a 
communication network

■ Processors share a common 
synchronization mechanism
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Instruction
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[Valiant1990]
Bulk Synchronous Parallel Model (BSP)

Algorithms are divided into three repeating 
phases, forming multiple supersteps:

1. Local Computation

2. Global Communication

3. Synchronization

Superstep duration varies at runtime depending 
on computational and communication load.

›

›
›

›

𝒈 ⋅ 𝒎𝒔𝒈𝟎𝟏

𝒍

𝒈 ⋅ 𝒎𝒔𝒈𝟎𝟐

𝒘𝟎

Performance estimates using the following parameters:

Computation time: 𝒕𝑾 = 𝐦𝐚𝐱{𝒘𝒊}

Communication time: 𝒕𝑪 = 𝒈 ⋅ 𝒎 ⋅ 𝒉
𝒈 ~ message bandwidth
𝒎 = 𝐦𝐚𝐱 𝒎𝒔𝒈𝒌 ~ message size

𝒉 = 𝐦𝐚𝐱 #𝒊𝒏𝒊, #𝒐𝒖𝒕𝒊 ~ communication pattern

Synchronization overhead: 𝒕𝑺 = 𝒍



Lukas Wenzel

ParProg 2020 D1 
Shared-Nothing 
Basics

Chart 10

[Valiant1990]
Bulk Synchronous Parallel Model (BSP)

BSP exhibits many important characteristics of real distributed systems:

■ Communication is not free

Interaction between distributed nodes comes at a cost 𝒕𝑪

■ Surface-to-Volume effect

Excessive subdivision of workloads increases communication time 𝒕𝑪 without 
sufficiently decreasing computation time 𝒕𝑾

■ Unbalanced work distribution

Superstep period is determined by longest running individual computation 
𝐦𝐚𝐱 𝒘𝒊 , idle time grows with 𝐦𝐚𝐱 𝒘𝒊 −𝐦𝐢𝐧 𝒘𝒊
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[Valiant1990]
Bulk Synchronous Parallel Model (BSP)

Parallel Sum algorithm on BSP:

■ Synchronization after every addition

■ Excessive ratio between communication and 
computation

A[0] A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8] A[9]

p0 p1 p2 p3 p4 p5 p6 p7 p8 p9

A[0] A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8] A[9]

p0 p1 p2 p3 p4 p5 p6 p7 p8 p9

A[0] A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8] A[9]

p0 p1 p2 p3 p4 p5 p6 p7 p8 p9

A[0] A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8] A[9]

p0 p1 p2 p3 p4 p5 p6 p7 p8 p9

A[0] A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8] A[9]
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[Valiant1990]
Bulk Synchronous Parallel Model (BSP)

Parallel Sum algorithm on BSP:

■ Synchronization after every addition

■ Excessive ratio between communication and 
computation

➢ Perform additions in larger blocks using 
fewer processors

A[0] A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8] A[9]

p0 p1 p2 p3 p4 p5 p6 p7 p8 p9

A[0] A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8] A[9]

p0 p1 p2 p3 p4 p5 p6 p7 p8 p9

A[0] A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8] A[9]

p0 p1 p2 p3 p4 p5 p6 p7 p8 p9

A[0] A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8] A[9]

p0 p1 p2 p3 p4 p5 p6 p7 p8 p9

A[0] A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8] A[9]

A[0] A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8] A[9]

p0

p0

p1

p1

p2

p0 p1

A[0] A[4] A[8]

p0

p0

A[0]
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[Culler1993]
LogP Model

Similar to BSP architecture, but
omits global synchronization in favor of 
individual synchronization.

■ Processors use local memory and 
execute instructions asynchronously

■ Processors communicate and 
synchronize through a network

Parameters:

𝑷 − #processors

𝒈 − gap (time in cycles between messages 

from / to a single processor)

𝒐 − overhead (time in cycles for send / 
receive operation)

𝒍 − latency (time in cycles between 

transmission and reception of a message)
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Instruction

Instruction

›

Memory
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Instruction›

Memory
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Instruction
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Instruction

Instruction

Instruction
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[Culler1993]
LogP Model

LogP enables a fine-grained analysis of 
communication patterns.

Example: Request-Response sequence 
between two processors

■ 𝑷 = 𝟐 ; 𝒍 = 𝟑 ; 𝒈 = 𝟒 ; 𝒐 = 𝟐 ; 𝒕𝒓𝒆𝒔𝒑 = 𝟑

■ 𝒕𝒕𝒐𝒕𝒂𝒍 = 𝟐 ⋅ 𝒍 + 𝟒 ⋅ 𝒐 + 𝒕𝒓𝒆𝒔𝒑 = 𝟏𝟕

■ 𝒕𝒕𝒐𝒕𝒂𝒍 is independent of 𝒈 because 
processor bandwidth is not saturated by 
this workload

›

›
›

›

18 19 200 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

g
P0 o

g
o

P1 go𝒕𝒓𝒆𝒔𝒑

g
o

𝒍 𝒍
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Parallel Sum algorithm on LogP

■ 𝑷 = 𝟒 ; 𝒍 = 𝟏 ; 𝒈 = 𝟒 ; 𝒐 = 𝟐 ; 𝒕𝒂𝒅𝒅 = 𝟏

➢ In 18 cycles, the optimal algorithm on 
the given LogP parameterization can sum 
38 values

■ Each processor performs local 
calculations for the longest possible time

■ Find the latest cycle when each slave 
process must send results to its master, 
by tracing back communication times

■ Each slave is associated with the master 
that has the latest message reception 
requirement

18 19 200 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

P0

P2

P1

P3

[Culler1993]
LogP Model
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Parallel Machine Models

BSP and LogP allow abstract reasoning about parallel algorithms for DM-MIMD 
systems in general, without relying on characteristics of an actual system.

➢ Valuable for designing, analyzing and optimizing algorithms.

Optimizing a particular implementation of an algorithm usually benefits from 
knowledge of actual system characteristics.

Machine Model Concrete MachineProblem Algorithm

Implementation



Processing elements can access their private address spaces and exchange 
messages

Cluster: Multiple independent machines connected through a network

□ Compute cluster: Speedup

□ Load Balancing cluster: Throughput

□ High Availability cluster: Dependability

All clusters are distributed systems, but only compute clusters intended for parallel 
workloads.

This lecture considers only compute clusters.
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Recap
DM-MIMD Hardware 
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A Large Compute Cluster 
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DM-MIMD Sssssytems

Nodes in a DM-MIMD system are usually SM-MIMD machines, to exploit multiple 
levels of scalability.

Node architecture has been discussed, but what about network architecture?

Network

NIC NIC NIC
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Network Components

Network Interface Controllers (NIC)

= Peripheral devices attached to a node's IO subsystem,
implement a network port

■ Various IO-interconnect and DMA mechanisms

■ May offer limited processing capability (e.g. for packet decoding, filtering, ...)

Switches

= Independent components with multiple network ports,
route messages between attached links

Links

= physical media (e.g. optical fibers, copper wires, coaxial cables),

connected in a specific topology

Node

NIC

Switch

NIC

Switch

Node

NIC

Node

NIC

Link
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Excursion
Network Switches

Forwarding packets between any pair of 𝑵 ports requires implementation 

complexity 𝕆 𝑵𝟐 .

➢ Switches usually incorporate input and/or output queues as well as a crossbar 
between them

P0
IN

P1
IN

P2
IN

P0
OUT

P1
OUT

P2
OUT

Control

Input Queues

Output Queues

Crossbar

There are switch implementations in 𝕆 𝑵 ⋅ 𝐥𝐨𝐠 𝑵 .

■ Often multilayer networks of (2,2)-switch primitives

■ Can not connect any possible set of distinct port 
pairs at a time

➢ Sacrifice worst-case throughput for implementation 
efficiency
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Network Topologies

Topologies are characterized by multiple metrics:

■ Diameter ~ Latency

Maximum distance between any two nodes

■ Connectivity ~ Resilience

Minimum number of removed edges to cause partition

■ Bisection Bandwidth ~ Throughput

Transfer capacity across balanced network cuts

■ Cost ~ Network complexity

Total number of edges

■ Degree ~ Node complexity

Maximum number of edges per node

■ Link Bandwidth
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Network Topologies

Topologies are characterized by multiple metrics:

■ Diameter ~ Latency

Maximum distance between any two nodes

■ Connectivity ~ Resilience

Minimum number of removed edges to cause partition

■ Bisection Bandwidth ~ Throughput

Transfer capacity across balanced network cuts

■ Cost ~ Network complexity

Total number of edges

■ Degree ~ Node complexity

Maximum number of edges per node

■ Link Bandwidth
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Network Topologies

Topologies are characterized by multiple metrics:

■ Diameter ~ Latency

Maximum distance between any two nodes

■ Connectivity ~ Resilience

Minimum number of removed edges to cause partition

■ Bisection Bandwidth ~ Throughput

Transfer capacity across balanced network cuts

■ Cost ~ Network complexity

Total number of edges

■ Degree ~ Node complexity

Maximum number of edges per node

■ Link Bandwidth
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Network Topologies

Topologies are characterized by multiple metrics:

■ Diameter ~ Latency

Maximum distance between any two nodes

■ Connectivity ~ Resilience

Minimum number of removed edges to cause partition

■ Bisection Bandwidth ~ Throughput

Transfer capacity across balanced network cuts

■ Cost ~ Network complexity

Total number of edges

■ Degree ~ Node complexity

Maximum number of edges per node

■ Link Bandwidth
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Network Topologies

Topologies are characterized by multiple metrics:

■ Diameter ~ Latency

Maximum distance between any two nodes

■ Connectivity ~ Resilience

Minimum number of removed edges to cause partition

■ Bisection Bandwidth ~ Throughput

Transfer capacity across balanced network cuts

■ Cost ~ Network complexity

Total number of edges

■ Degree ~ Node complexity

Maximum number of edges per node

■ Link Bandwidth
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Network Topologies

Topologies are characterized by multiple metrics:

■ Diameter ~ Latency

Maximum distance between any two nodes

■ Connectivity ~ Resilience

Minimum number of removed edges to cause partition

■ Bisection Bandwidth ~ Throughput

Transfer capacity across balanced network cuts

■ Cost ~ Network complexity

Total number of edges

■ Degree ~ Node complexity

Maximum number of edges per node

■ Link Bandwidth



Lukas Wenzel

ParProg 2020 D1 
Shared-Nothing 
Basics

Chart 22

Network Topologies

Fully Connected

Diameter 𝟏

Connectivity 𝒏 − 𝟏

Cost
𝒏𝟐 − 𝒏

𝟐

Degree 𝒏 − 𝟏

Ring

Diameter
𝒏

𝟐

Connectivity 𝟐

Cost 𝒏

Degree 𝟐

Star

Diameter 𝟐

Connectivity 𝟏

Cost 𝒏

Degree 𝟏 | 𝒏
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Network Topologies

d-Mesh

Diameter
𝒅 ⋅ 𝒌 − 𝟏
= 𝒅 ⋅ (𝒅 𝒏 − 𝟏)

Connectivity 𝒅

Cost
𝒅 ⋅ 𝒌𝒅−𝟏 ⋅ 𝒌 − 𝟏

= 𝒅 ⋅ (𝒏 − 𝒏 ൗ𝒅−𝟏
𝒅)

Degree 𝟐 ⋅ 𝒅

𝐝 = 𝟐
𝐤 = 𝟑
𝐧 = 𝐤𝐝 = 𝟗

d-Torus

Diameter
ൗ𝒅 ⋅ (𝒌 − 𝟏)
𝟐

= ൗ𝒅 ⋅ (𝒅 𝒏 − 𝟏)
𝟐

Connectivity 𝟐 ⋅ 𝒅

Cost 𝒅 ⋅ 𝒌𝒅 = 𝒅 ⋅ 𝒏

Degree 𝟐 ⋅ 𝒅

𝐝 = 𝟐
𝐤 = 𝟑
𝐧 = 𝐤𝐝 = 𝟗
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Network Topologies

Hypercubes

= d-Mesh with k = 2

e.g. 4D-Hypercube = 4-Mesh with k=2
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Network Topologies

Fat Tree of Depth 𝒍

= Binary 𝒍-level switch hierarchy,

where uplink bandwidth equals sum of downlink bandwidths

Fat Tree

Diameter 𝟐 ⋅ 𝒍 = 𝟐 ⋅ 𝒍𝒐𝒈𝟐(𝒏)

Connectivity 𝟏

Cost 𝟐𝒍+𝟏 − 𝟐 = 𝟐 ⋅ 𝒏 − 𝟐

Cost 
(Bandwidth adjusted)

𝒍 ⋅ 𝟐𝒍 = 𝒏 ⋅ 𝒍𝒐𝒈𝟐(𝒏)

Degree 𝟏 | 𝟑
𝒍 = 𝟑
𝒏 = 𝟐𝒍 = 𝟖



And now for a break and
a cup of Dian Hong Gushu.

*or beverage of your choice 


