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■ Sources
□ EEMBC benchmarks (embedded systems), SPEC benchmarks
□ Database and text mining technology
□ Algorithms in computer design and graphics, machine learning
□ Original “7 Dwarfes” for supercomputing [Colella]

■ “Anti-bechmarks”
□ Dwarfs are not tied to code or language artifacts
□ Can serve as understandable vocabulary across disciplines
□ Allow feasibility study of hardware and software design

– No need to wait for applications being developed
■ Relevance of single dwarfs widely differs
■ One dwarf may be implemented based on an other one
■ Reference implementations for different platforms exist

Sven Köhler

ParProg20 E1 
Problem Classes

Chart 3

A View From Berkeley



Dwarf Popularity
= How Compelling Apps Relate To Dwarfs
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Classic vector and matrix operations

do i=1,n
do j=1,n

do k=1,n
a(i,j) = a(i,j) + b(i,k)*c(k,j)

Frequent operation in computer graphics
and as training step in machine learning

Dwarf 1: Dense Linear Algebra
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Operations on a sparse matrix (lots of zeros)

do i=1,n
do j=row_start(i),row_start(i+1)-1

y(i) = y(i) + val(j)*x(col_index(j))

Complex data-dependency structure
Common in e.g. in graph problems.

Dwarf 2: Sparse Linear Algebra
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Dwarf 3: Spectral Methods
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Data is converted into other domains,
which means multiple stages with inter-
depended data access patterns.

Common ML data preparation step, or 
used in signal processing.



Dwarf 4: N-Body Methods
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Calculations on interactions between
Many discrete points.

Large number of independent calculations
in a time step, followed by wide communication.



Dwarf 5: Structured Grid
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Data as a regular multidimensional grid:
access is regular and statically
determinable (strided).

Computation is sequence of grid updates
(all points are updated using values from a
small neighborhood).

Typical Application: Weather simulations



Dwarf 5 Variant: Adaptive Mesh Refinement
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Overlaying higher-resolution grids across
areas of interest. Requires complex indexing and
difficult communication across nodes.

Example:
Modular Ocean Model

© The Comet Project



Dwarf 6: Unstructured Grid
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Elements update neighbors in irregular
mesh/grid with static or dynamic structure

Problematic data distribution and access
requirements, usually indirection by tables.

Modelling domain (e.g. physics engine)
■ Mesh represents surface or volume
■ Entities are points, edges, faces, volumes, …
■ Applying tension, temperature, pressure



Dwarf 7: MapReduce (= “Monte Carlo”)
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Repeated independent execution of a function 
(e.g. RNG, map function), results aggregated.

Examples:
Monte Carlo Pi, BOINC (SETI@home),
Optimization Protein Structure Prediction



■ AND, OR, XOR, …
■ Exploit bit-level parallelism for high throughput

■ Simple operations on very large amounts of variable-word-length data
■ Parallel Mapping algorithms may be broken into data pipelines:

□ each processor executes part of the pipeline and
then passes the data to the next processor

■ Special-purpose hardware (or FPGAs)

■ Examples:

□ Networks and file systems: checksums, RAID
□ Data mining: population count, finding

the number of 1s in a word

Dwarf 8: Combinational Logic*
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■ Traverse a number of objects and examine their characteristics once
■ Usually indirect lookups and little computations

■ Variation: searching
■ Pointer chasing without much chance for more efficient processing

■ Possible Optimizations (seldom feasible):
□ There may be locality in accesses to the graph (update graph storage)

□ There may be some processing per node that can reduce the effective 
cost of finding later nodes

Dwarf 9: Graph Traversal*
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Dwarf 10(*): Dynamic Programming
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Compute optimal solutions by combining
optimal, yet simpler overlapping subproblem
solutions (typically use a table to avoid
recomputation)

Examples:
circuit design, DNA sequence matching 
(Needleman–Wunsch), Viterbi, Knapsack, …



Dwarf 11(*): Branch-and-Bound
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Global optimization problem in very large
search space:
■ Branches into subdivisions
■ Rules out infeasible regions to optimize

execution time and energy consumption

Examples:
Integer Linear Programming, Boolean 
Satisfiability, Combinatorial Optimization, 
Traveling Salesman, Constraint Programming,
N-Queens



■ A graph in which nodes represent 
variables, and edges represent 
conditional probabilities

■ Bayesian networks, Hidden Markov 
models, neural networks

■ Examples: AI, machine learning
speech and image recognition

■ Evaluation is a form of Graph Traversal,
or Dense-Linear Algebra

■ Uniprocessor Mapping: 
□ Probabilistic aspect -> small amount of computation per node
□ Processing many observations and updating variables accordingly

■ Parallel Mapping:
□ May be evaluated multiple times for a single problem

-> Update conflicts possible
□ Simple: many graphical models can be evaluated for a single input

Dwarf 12(*): Graphical Models

Sven Köhler

ParProg20 E1 
Problem Classes

Chart 17



■ Interconnected set of states, initial state, input, 
transitions (based on current inputs and state),
output (based on current inputs and state)

■ Parallelism in the computation of state transitions
■ Decomposing into multiple state machines possible

□ Smaller and simpler

□ Combined states and outputs functionally mimic the original
□ Communication/synchronization required

■ Issue: Wasted resources mapping 1 state = 1 thread (just one state possible),
may not justify communication overhead

■ Optimization: Decomposition, multiple FSM at the same time
(case-statements within)

Dwarf 13(*): Finite State Machines
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Exemplary Reference Implementations
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