
Parallel Programming and Heterogeneous Computing
E1 - Outlook: Problem Classes

Max Plauth, Sven Köhler, Felix Eberhardt, Lukas Wenzel, and Andreas Polze
Operating Systems and Middleware Group



The Landscape of Parallel Computing Research: A
View from Berkeley

Krste Asanovic
Ras Bodik
Bryan Christopher Catanzaro
Joseph James Gebis
Parry Husbands
Kurt Keutzer
David A. Patterson
William Lester Plishker
John Shalf
Samuel Webb Williams
Katherine A. Yelick

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2006-183
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.html

December 18, 2006

A View from Berkeley

Sven Köhler

ParProg20 E1 
Problem Classes

Chart 21Berkeley Dwarfs

Sven Köhler�




■ Sources
□ EEMBC benchmarks (embedded systems), SPEC benchmarks
□ Database and text mining technology
□ Algorithms in computer design and graphics, machine learning
□ Original “7 Dwarfes” for supercomputing [Colella]

■ “Anti-bechmarks”
□ Dwarfs are not tied to code or language artifacts
□ Can serve as understandable vocabulary across disciplines
□ Allow feasibility study of hardware and software design

– No need to wait for applications being developed
■ Relevance of single dwarfs widely differs
■ One dwarf may be implemented based on an other one
■ Reference implementations for different platforms exist

Sven Köhler

ParProg20 E1 
Problem Classes

Chart 3

A View From Berkeley



Dwarf Popularity
= How Compelling Apps Relate To Dwarfs

Sven Köhler

ParProg20 E1 
Problem Classes

Chart 4Hot →Cold
* added later

*
*
*

*

*
*



Classic vector and matrix operations

do i=1,n
do j=1,n

do k=1,n
a(i,j) = a(i,j) + b(i,k)*c(k,j)

Frequent operation in computer graphics
and as training step in machine learning

Dwarf 1: Dense Linear Algebra

Sven Köhler

ParProg20 E1 
Problem Classes

Chart 5C = AxB



Operations on a sparse matrix (lots of zeros)

do i=1,n
do j=row_start(i),row_start(i+1)-1

y(i) = y(i) + val(j)*x(col_index(j))

Complex data-dependency structure
Common in e.g. in graph problems.

Dwarf 2: Sparse Linear Algebra

Sven Köhler

ParProg20 E1 
Problem Classes

Chart 6



Dwarf 3: Spectral Methods

Sven Köhler

ParProg20 E1 
Problem Classes

Chart 7

Data is converted into other domains,
which means multiple stages with inter-
depended data access patterns.

Common ML data preparation step, or 
used in signal processing.



Dwarf 4: N-Body Methods

Sven Köhler

ParProg20 E1 
Problem Classes

Chart 8

Calculations on interactions between
Many discrete points.

Large number of independent calculations
in a time step, followed by wide communication.



Dwarf 5: Structured Grid

Sven Köhler

ParProg20 E1 
Problem Classes

Chart 9

Data as a regular multidimensional grid:
access is regular and statically
determinable (strided).

Computation is sequence of grid updates
(all points are updated using values from a
small neighborhood).

Typical Application: Weather simulations



Dwarf 5 Variant: Adaptive Mesh Refinement

Sven Köhler

ParProg20 E1 
Problem Classes

Chart 10

Overlaying higher-resolution grids across
areas of interest. Requires complex indexing and
difficult communication across nodes.

Example:
Modular Ocean Model

© The Comet Project



Dwarf 6: Unstructured Grid

Sven Köhler

ParProg20 E1 
Problem Classes

Chart 11

Elements update neighbors in irregular
mesh/grid with static or dynamic structure

Problematic data distribution and access
requirements, usually indirection by tables.

Modelling domain (e.g. physics engine)
■ Mesh represents surface or volume
■ Entities are points, edges, faces, volumes, …
■ Applying tension, temperature, pressure



Dwarf 7: MapReduce (= “Monte Carlo”)

Sven Köhler

ParProg20 E1 
Problem Classes

Chart 12

Repeated independent execution of a function 
(e.g. RNG, map function), results aggregated.

Examples:
Monte Carlo Pi, BOINC (SETI@home),
Optimization Protein Structure Prediction



■ AND, OR, XOR, …
■ Exploit bit-level parallelism for high throughput

■ Simple operations on very large amounts of variable-word-length data
■ Parallel Mapping algorithms may be broken into data pipelines:

□ each processor executes part of the pipeline and
then passes the data to the next processor

■ Special-purpose hardware (or FPGAs)

■ Examples:

□ Networks and file systems: checksums, RAID
□ Data mining: population count, finding

the number of 1s in a word

Dwarf 8: Combinational Logic*

Sven Köhler

ParProg 2019 
Problem Classes

Chart 13



■ Traverse a number of objects and examine their characteristics once
■ Usually indirect lookups and little computations

■ Variation: searching
■ Pointer chasing without much chance for more efficient processing

■ Possible Optimizations (seldom feasible):
□ There may be locality in accesses to the graph (update graph storage)

□ There may be some processing per node that can reduce the effective 
cost of finding later nodes

Dwarf 9: Graph Traversal*

Sven Köhler

ParProg 2019 
Problem Classes

Chart 14



Dwarf 10(*): Dynamic Programming

Sven Köhler

ParProg20 E1 
Problem Classes

Chart 15

Compute optimal solutions by combining
optimal, yet simpler overlapping subproblem
solutions (typically use a table to avoid
recomputation)

Examples:
circuit design, DNA sequence matching 
(Needleman–Wunsch), Viterbi, Knapsack, …



Dwarf 11(*): Branch-and-Bound

Sven Köhler

ParProg20 E1 
Problem Classes

Chart 16

Global optimization problem in very large
search space:
■ Branches into subdivisions
■ Rules out infeasible regions to optimize

execution time and energy consumption

Examples:
Integer Linear Programming, Boolean 
Satisfiability, Combinatorial Optimization, 
Traveling Salesman, Constraint Programming,
N-Queens



■ A graph in which nodes represent 
variables, and edges represent 
conditional probabilities

■ Bayesian networks, Hidden Markov 
models, neural networks

■ Examples: AI, machine learning
speech and image recognition

■ Evaluation is a form of Graph Traversal,
or Dense-Linear Algebra

■ Uniprocessor Mapping: 
□ Probabilistic aspect -> small amount of computation per node
□ Processing many observations and updating variables accordingly

■ Parallel Mapping:
□ May be evaluated multiple times for a single problem

-> Update conflicts possible
□ Simple: many graphical models can be evaluated for a single input

Dwarf 12(*): Graphical Models

Sven Köhler

ParProg20 E1 
Problem Classes

Chart 17



■ Interconnected set of states, initial state, input, 
transitions (based on current inputs and state),
output (based on current inputs and state)

■ Parallelism in the computation of state transitions
■ Decomposing into multiple state machines possible

□ Smaller and simpler

□ Combined states and outputs functionally mimic the original
□ Communication/synchronization required

■ Issue: Wasted resources mapping 1 state = 1 thread (just one state possible),
may not justify communication overhead

■ Optimization: Decomposition, multiple FSM at the same time
(case-statements within)

Dwarf 13(*): Finite State Machines

Sven Köhler

ParProg20 E1 
Problem Classes

Chart 18



Exemplary Reference Implementations

Sven Köhler

ParProg20 E1 
Problem Classes

Chart 19



^D Sven Köhler

ParProg20 E1 
Problem Classes

Chart 20

end


