
Parallel Programming and Heterogeneous Computing
E2 - Summary

Max Plauth, Sven Köhler, Felix Eberhardt, Lukas Wenzel and Andreas Polze
Operating Systems and Middleware Group

A. The Parallelization Problem

□ Power wall, memory wall, Moore’s law

□ Terminology and metrics

B. Shared Memory Parallelism
□ Theory of concurrency, hardware today and in the past

□ Programming models, optimization, profiling

C. Heterogeneous Computing

□ On-Chip Accelerators (e.g. SIMD, special purpose accelerators, etc.)

□ External Accelerators (e.g. GPUs, FPGAs, etc.)
D. Shared Nothing Parallelism

□ Theory of concurrency, hardware today and in the past

□ Programming models, optimization, profiling

ParProg20 E2
Summary

Chart 2

Course Topics

A: Why Parallel?, Terminology, Hardware,
Metrics, Workloads, Foster‘s Methodology

CPU core CPU core CPU core CPU core

L2 Cache L2 Cache

L3 Cache

L1 Cache L1 Cache L1 Cache L1 Cache

Bus

Bus Bus

Max Plauth

ParProg 2020
Introduction:
Why Parallel?

Chart 4

Moore’s Law vs. Walls:
Speed, Power, Memory, ILP

Dynamic Power ~
Number of Transistors (N) x

Capacitance (C) x
Voltage2 (V2) x Frequency (F)

Execution
Unit

Execution
Unit

Execution
Unit

■ Work Harder
(execution capacity)

■ Work Smarter
(optimization)

■ Get Help
(parallelization) Lukas Wenzel

ParProg20 A1
Terminology

Chart 5

[Pfister1998]
Three Ways of Doing Things Faster

Workload

: Workload
collection of operations
that are executed to
produce a desired result

~ Program, Application
: Execution Unit
facility that is capable of
executing the operations
of a workload

Parallelism
Capability of a machine to perform

multiple tasks simultaneously
■ Requires parallel hardware

Lukas Wenzel

ParProg20 A1
Terminology

Chart 6

An Important Distinction

Concurrency
Capability of a machine to have multiple

tasks in progress at any point in time
■ Can be realized without parallel

hardware

Any parallel program is a concurrent program,
some concurrent programs cannot be executed correctly in parallel.

: Parallelism
: Concurrency
: Distribution

Distribution
Form of Parallelism, where tasks are

performed by multiple communicating
machines

Concurrency ⊃ Parallelism ⊃ Distribution
sometimes Concurrency \ Parallelism called "Concurrency"

Lukas Wenzel

ParProg 2020 A2
Parallel Hardware

Chart 7

Hardware Taxonomy [Flynn1966]

LD A
LD B
ADD C A B
ST C
MUL
ST

A B 2
A

Multiple
Data Streams

M
u

lt
ip

le

In
st

ru
ct

io
n

 S
tr

ea
m

s

SISD SIMD
LD A
LD B
ADD C0 A B
MUL 3
SUB C0 B

LD A
LD B
SUB Cn B
DIV Cn
MUL
ST

8
C0 C0

C0

Dn A
Cn CnDn

CnST C0

MISD MIMD

LD A
LD B
ADD C A B
ST C
MUL
ST

A B 2
A

LD D
ADD D

LD T
CMP
BGE label

ST D
D 6

D T

LD
LD
ADD
ST
MUL
ST

A0 A1 An
B0 B1 Bn
C0 C1 CnA0B0 A1B1 AnBn

C0 C1 Cn
A0 A1 AnB0 B1 Bn2 2 2

A0 A1 An

Processing
Element

TaskTaskTask
Lukas Wenzel

ParProg 2020 A2
Parallel Hardware

Chart 8

MIMD Hardware Taxonomy

MIMD

SM-MIMD
(Shared Memory)

Processing elements can directly
access a common address space

DM-MIMD
(Distributed Memory)

Processing elements can access their
private address spaces and

exchange messages

Processing
Element

TaskTaskTask

Processing
Element

TaskTaskTask...

Shared Memory

Data Data

Processing
Element

TaskTaskTask

Private Memory

Message

Interconnect / Network

Data

MessageMessage

Private Memory

Data

...

Lukas Wenzel

ParProg 2020 A2
Parallel Hardware

Chart 9

SM-MIMD Hardware

MIMD

SM-MIMD
(Shared Memory)

DM-MIMD
(Distributed Memory)

UMA
(Uniform Memory Access)

NUMA
(Non-Uniform Memory Access)

Memory

PE PE PE

Memory

PE

Node

Memory

PE

Node
Memory

PE

Node

Memory

PE

Node

■ Decrease Latency – process a single workload faster (= speedup)

■ Increase Throughput – process more workloads in the same time

Ø Both are Performance metrics

■ Scalability: make best use of additional resources

□ Scale Up: Utilize additional resources on a machine

□ Scale Out: Utilize resources on additional machines

■ Cost/Energy Efficiency:

□ minimize cost/energy requirements for given performance objectives
□ alternatively: maximize performance for given cost/energy budget

■ Utilization: minimize idle time (=waste) of available resources

■ Precision-Tradeoffs: trade performance for precision of results

Lukas Wenzel

ParProg20 A1
Terminology

Chart 10

Recap
Optimization Goals

Lukas Wenzel

ParProg 2020 A3
Performance
Metrics

Chart 11

Anatomy of a Workload

T1 T2 T3 T5T4 T6 T7 T8

The longest task puts a lower bound on the shortest execution time.

𝐓𝐩𝐚𝐫 𝐓𝐬𝐞𝐪

𝐓𝐩𝐚𝐫/𝐍 𝐓𝐬𝐞𝐪

𝐓𝟏

𝐓(𝐍) 𝐓 𝐍 =
𝐓𝐩𝐚𝐫
𝐍 + 𝐓𝐬𝐞𝐪

Replace absolute times by parallelizable fraction 𝐏:

𝐓𝐩𝐚𝐫 = 𝐓𝟏 ⋅ 𝐏
𝐓𝐬𝐞𝐪 = 𝐓𝟏 ⋅ (𝟏 − 𝐏)

Modeling discrete tasks is impractical → simplified continuous model.

𝑻 𝑵 = 𝑻𝟏 ⋅
𝑷
𝑵+ (𝟏 − 𝑷)

Even for arbitrarily large 𝐍, the speedup converges to a fixed limit

For getting reasonable speedup out of 1000 processors, the sequential part must
be substantially below 0.1%

Lukas Wenzel

ParProg 2020 A3
Performance
Metrics

Chart 12

[Amdahl1967]
Amdahl‘s Law

𝐬𝐀𝐦𝐝𝐚𝐡𝐥 𝐍 =
T'
T(N)

=
T'

T' ⋅
P
N + (1 − P)

=
𝟏

𝐏
𝐍 + (𝟏 − 𝐏)

𝐥𝐢𝐦
𝑵→*

𝒔𝑨𝒎𝒅𝒂𝒉𝒍 𝑵 =
𝟏

𝟏 − 𝐏

Amdahl's Law derives the speedup 𝐬𝐀𝐦𝐝𝐚𝐡𝐥 𝐍 for a parallelization degree 𝐍

Lukas Wenzel

ParProg 2020 A3
Performance
Metrics

Chart 13

[Amdahl1967]
Amdahl‘s Law

By Daniels220 at English Wikipedia, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=6678551

Regardless of processor count, 90%
parallelizable code allows not more
than a speedup by factor 10.

Ø Parallelism requires highly
parallelizable workloads to
achieve a speedup

■ What is the sense in large parallel
machines?

Amdahl's law assumes a simple
speedup scenario!

Ø isolated execution of a single
workload

Ø fixed workload size

Consider a scaled speedup scenario, allowing a variable workload size 𝐰.

Amdahl ~ What is the shortest execution time for a given workload?

Gustafson-Barsis ~ What is the largest workload for a given execution time?

Lukas Wenzel

ParProg 2020 A3
Performance
Metrics

Chart 14

[Gustafson1988]
Gustafson-Barsis’ Law

𝐓𝐩𝐚𝐫 𝐓𝐬𝐞𝐪

𝐓

𝐓𝐩𝐚𝐫 𝐓𝐬𝐞𝐪

𝐓

𝐰𝟏 ~ 𝐓𝐩𝐚𝐫 + 𝐓𝐬𝐞𝐪 𝐰(𝐍) ~ 𝐍 ⋅ 𝐓𝐩𝐚𝐫 + 𝐓𝐬𝐞𝐪

Determine the scaled speedup 𝐬𝐆𝐮𝐬𝐭𝐚𝐯𝐬𝐨𝐧 𝐍 through
the increase in workload size 𝐰(𝐍) over the fixed
execution time 𝐓

𝐬𝐆𝐮𝐬𝐭𝐚𝐟𝐬𝐨𝐧 𝐍 = 𝐏 ⋅ 𝑵 + (𝟏 − 𝑷)

Parallel fraction 𝐏 is a hypothetical parameter and not easily deduced from a given
workload.

Ø Karp-Flatt-Metric determines sequential fraction 𝐐 = 𝟏 − 𝐏 empirically

1. Measure baseline execution time 𝐓𝟏
by executing workload on a single execution unit

2. Measure parallelized execution time 𝐓(𝐍)
by executing workload on 𝐍 execution units

3. Determine speedup 𝐬(𝐍) = ,𝐓𝟏 𝐓(𝐍)

4. Calculate Karp-Flatt-Metric

𝐐(𝐍) =

𝟏
𝐬(𝐍) −

𝟏
𝐍

𝟏 − 𝟏
𝐍

Lukas Wenzel

ParProg 2020 A3
Performance
Metrics

Chart 15

[Karp1990]
Karp-Flatt-Metric

Sven Köhler

ParProg20 A4
Foster’s
Methodology

Chart 16

Workloads

“task-level parallelism”

■ Different tasks being
performed at the same time

■ Might originate from the
same or different programs

“data-level parallelism”

■ Parallel execution of the
same task on disjoint data
sets

■ A) Search for concurrency and scalability

□ Partitioning
Decompose computation and data into the smallest possible tasks

□ Communication
Define necessary coordination of task execution

■ B) Search for locality and other performance-related issues

□ Agglomeration
Consider performance and implementation costs

□ Mapping
Maximize execution unit utilization, minimize communication

■ Might require backtracking or parallel investigation of steps
Sven Köhler

ParProg20 A4
Foster’s
Methodology

Chart 17

Designing Parallel Algorithms [Foster]

Sven Köhler

ParProg20 A4
Foster’s
Methodology

Chart 18

Surface-To-Volume Effect
[Foster, Breshears]

[nicerweb.com]

Visualize the data to be
processed (in parallel) as
sliced 3D cube

B1: Shared Memory Systems (Concurrency & Synchronization)

Critical Section

Critical
Section

S
hared Resource (e.g. m

em
ory regions)

Sven Köhler

ParProg20 B1
Concurrency &
Synchronization

Chart 20

T0 T1 T2

■ Mutual Exclusion demand: Only
one task at a time is allowed into
its critical section, among all tasks
that have critical sections for the
same resource.

■ Progress demand: If no other task
is in the critical section, the
decision for entering should not be
postponed indefinitely. Only tasks
that wait for entering the critical
section are allowed to participate in
decisions.

■ Bounded Waiting demand: It
must not be possible for a task
requiring access to a critical section
to be delayed indefinitely by other
threads entering the section
(starvation problem)

■ Solution: Dekker‘s algorithm, attributed by Dijkstra
□ Combination of approach #4 and a variable `turn`,

which realizes mutual blocking avoidance through prioritization
□ Idea: Spin for section entry only if it is your turn

Cooperating Sequential Processes [Dijkstra1965]
Solution: Dekker got it!

Sven Köhler

ParProg20 B1
Concurrency &
Synchronization

Chart 21

■ Test-and-set processor instruction, wrapped by the operating system or compiler

□ Write to a memory location and return its old value as atomic step

□ Also known as compare-and-swap (CAS) or read-modify-write

■ Idea: Spin in writing 1 to a memory cell, until the old value was 0

□ Between writing and test, no other operation can modify the value

■ Busy waiting for acquiring a (spin) lock

■ Efficient especially for short
waiting periods

■ For long periods try to deactivate
your processor between loops.

Test-and-Set Instructions

function Lock(boolean *lock) {
while (test_and_set (lock))

;
}

#define LOCKED 1
int TestAndSet(int* lockPtr) {

int oldValue;
oldValue = SwapAtomic(lockPtr, LOCKED);
return oldValue == LOCKED;

}

Sven Köhler

ParProg20 B1
Concurrency &
Synchronization

Chart 22

Coroutines

def generator():
for i in range(5):

yield i * 2

for item in generator():
print(item)

var q := new queue
coroutine produce

loop
while q is not full

create some new items
add the items to q

yield to consume
coroutine consume

loop
while q is not empty

remove some items from q
use the items

yield to produce

Sven Köhler

ParProg20 B1
Concurrency &
Synchronization

Chart 23

■ Today: Multitude of high-level synchronization primitives
■ Spinlock

□ Perform busy waiting, lowest overhead for short locks

■ Reader / Writer Lock
□ Special case of mutual exclusion through semaphores
□ Multiple „Reader“ tasks can enter the critical section at the same time,

but „Writer“ task should gain exclusive access
□ Different optimizations possible:

minimum reader delay, minimum writer delay, throughput, …

Other High-Level Primitives

Sven Köhler

ParProg20 B1
Concurrency &
Synchronization

Chart 24

■ 1970. E.G. Coffman and A. Shoshani.
Sequencing tasks in multiprocess systems to avoid deadlocks.

□ All conditions must be fulfilled to allow a deadlock to happen
□ Mutual exclusion condition - Individual resources are available or held by

no more than one task at a time

□ Hold and wait condition – Task already holding resources may attempt to
hold new resources

□ No preemption condition – Once a task holds a resource, it must
voluntarily release it on its own

□ Circular wait condition – Possible for a task to wait for a resource held by
the next thread in the chain

■ Avoiding circular wait turned out to be the easiest solution for deadlock
avoidance

■ Avoiding mutual exclusion leads to non-blocking synchronization
□ These algorithms no longer have a critical section

Coffman Conditions [Coffman1970]

Sven Köhler

ParProg20 B1
Concurrency &
Synchronization

Chart 25

: Coffman Conditions

B2: Programming Models

1
POSIX Threads (Pthreads)

ParProg20 B2
Programming
Models
Sven Köhler

Chart 27

pthread

_create
_self
_cancel
_exit
_join
_kill
_attr_setstacksize
_attr_setstackaddr
_mutex_lock
_mutex_trylock
_mutex_unlock
_cond_signal
_cond_timedwait
_cond_wait
_rwlock_rdlock
_rwlock_unlock
_rwlock_wrlock
_barrier_wait
_key_create
_setspecific
[...]

■ C++11 specification added support concurrency constructs
■ Allows asynchronous tasks with std::async or std::thread
■ Relies on Callable instance (functions, member functions, lambdas, ...)

C++11

#include <future>
#include <iostream>

void write_message(std::string const& message) {
std::cout<<message;

}

int main() {
auto f = std::async(write_message,

"hello world from std::async\n");
write_message("hello world from main\n");
f.wait();

}

#include <thread>
#include <iostream>

void write_message(std::string const& message) {
std::cout<<message;

}

int main() {
std::thread t(write_message,

"hello world from std::thread\n");
write_message("hello world from main\n");
t.join();

}

ParProg20 B2
Programming
Models
Sven Köhler

Chart 28

https://en.cppreference.com/w/cpp/thread

https://en.cppreference.com/w/cpp/thread

■ Launch policy for the async call can be specified
□ Deferred or immediate launch of the activity

■ As for all asynchronous task types, a future is returned
□ Object representing the (future) result of an asynchronous operation,

allows to block on the result reading
□ Original concept by Baker and Hewitt [1977]

■ A promise object can store a value that is later acquired via a future
object
□ Separate concept since futures are only readable
□ Can provide a dummy barrier implementation

■ Future == Handle, Promise == Value
■ Promise and future as concept also available in Java 5, Smalltalk,

Scheme, CORBA, …

C++11: Futures & Promises

ParProg20 B2
Programming
Models
Sven Köhler

Chart 29

Explicit vs Implicit Threading

Sven Köhler

ParProg20 B2
Programming
Models

Chart 30

process

thread thread thread thread

Explicit Threading
process

thread thread

Implicit Threading

Task1
Task2

Task3
Task4 Task1

Task3

Task2

Task4

Explicit, as part of some sequential code
(OS API, C++/Java/Python Threads)

Thread generation, synchronization, data access:

Implicit, based on a framework
(OpenMP, OpenCL, Intel TBB, ...)

Specification for C/C++ and Fortran language extension
■ Portable shared memory thread programming
■ High-level abstraction of task- and loop parallelism
■ Derived from compiler-directed parallelization of serial language code

(HPF), with support for incremental change of legacy code
■ Multiple implementations exist
Programming model: Fork-Join-Parallelism
■ Master thread spawns group of threads for limited code region

OpenMP

ParProg20 B2
Programming
Models
Sven Köhler

Chart 31

■ schedule (static, [chunk]):

□ Contiguous ranges of iterations (chunks) are assigned to the threads

□ Low overhead, round robin assignment to free threads

□ Static scheduling for predictable and similar work per iteration
□ Increasing chunk size reduces overhead, improves cache hit rate

□ Decreasing chunk size allows finer balancing of work load

□ Default is one chunk per thread
■ schedule (guided, [chunk])

□ Dynamic schedule, shrinking ranges per step
□ Starts with large block, until minimum chunk size is reached

□ Good for computations with increasing iteration length (e.g. prime sieves)
■ schedule (dynamic, [chunk])

□ Idling threads grab iteration (or chunk) as available (work-stealing)

□ Higher overhead, but good for unbalanced/unpredicable iteration work load

OpenMP Loop Parallelization Scheduling

ParProg20 B2
Programming
Models
Sven Köhler

Chart 32

Blumofe, Leiserson, Charles:
Scheduling Multithreaded Computations by Work Stealing (FOCS 1994)
Problem of scheduling scalable multithreading problems on SMP

Work sharing: When processors create new work,
the scheduler migrates threads for balanced utilization

Work stealing: Underutilized core takes work from other processor,
leads to less thread migrations

□ Goes back to work stealing research in Multilisp (1984)

□ Supported in OpenMP implementations, TPL, TBB, Java, Cilk, …

Randomized work stealing: Lock-free ready dequeue per processor

□ Task are inserted at the bottom, local work is taken from the bottom
□ If no ready task is available, the core steals the top-most one from another

randomly chosen core; added at the bottom
■ Ready tasks are executed, or wait for a processor becoming free

Large body of research about other work stealing variations

Work Stealing

ParProg20 B2
Programming
Models
Sven Köhler

Chart 33

B3: Hardware

■ ILP arises naturally within a workload
□ Programmers think in terms of a single instruction sequence

■ TLP is explicitly encoded within a workload
□ Programmers designates parallel operations using multiple instruction

sequences

Chart 35

Shared-Memory Hardware
Exploiting Instruction Level Parallelism

Why consider ILP in a parallel programming lecture?
Knowledge of common ILP mechanisms and assumptions enables
performance optimization on single-thread granularity!

ILP TLP
Lukas Wenzel

ParProg20 B2
Shared-Memory
Hardware

Superscalar Architecture

Chart 36

Shared-Memory Hardware
Exploiting Instruction Level Parallelism

Fetch Decode Issue

LSU

FXU0

FXU1

FPU
Register
File

BU

Memory
Subsystem

Lukas Wenzel

04

05

06

07

00

01

02

03

ParProg20 B2
Shared-Memory
Hardware

Single-Core Multithreading
■ Threads are the smallest units of parallelism under programmers’ explicit

control
■ There are different execution schemes for multiple threads on a single

core:

Chart 22

Shared-Memory Hardware
Thread Level Parallelism

Lukas Wenzel

Simultaneous

Time

Fine-grainedCoarse-grained

T0

T2 T2 T2

T0

T0 T0

T1

T2 T2 T2

T0 T0 T0

T1 T1

T2 T2 T2T2

T0 T0 T0 T0

T0 T0 T0 T0 T0 T1 T2

T2 T2 T0 T0

T0 T1 T1

T2 T2 T2 T0

T1 T1

T1 T1T2 T0

ParProg20 B2
Shared-Memory
Hardware

T2 T2

Chart 38

Shared-Memory Hardware
Memory Consistency Models

Lukas Wenzel

Overview

Sequential
Consistency

Total Store Order

load(A)

store(B)

acquire(L)+FENCE

store(C)

load(D)

FENCE+release(L)

store(E)

store(F)

Weak Consistency Release Consistency

load(A)

store(B)

acquire(L)

store(C)

load(D)

release(L)

store(E)

store(F)

load(A)

store(B)

acquire(L)

store(C)

load(D)

release(L)

store(E)

store(F)

load(A)

store(B)

acquire.AQ(L)

store(C)

load(D)

release.RL(L)

store(E)

store(F)

ParProg20 B2
Shared-Memory
Hardware

MSI Coherence Protocol
■ MSI is a simple coherence protocol, based on a state machine
■ Seen from a particular cache, each cache line is in one of three states:

□ Invalid: The cache line is not present in the cache, this cache may
service neither Load nor Store operations

□ Shared: The cache line is present in this and probably other caches,
this cache may service Load operations

□ Modified: The cache line is only present in this cache, this cache may
service Load and Store operations

Chart 39

Shared-Memory Hardware
Coherent Cache Hierarchy

Lukas Wenzel

ParProg20 B2
Shared-Memory
Hardware

B4: NUMA

Non-Uniform Memory Access
Concept

Felix Eberhardt

Chart 41

Socket

Socket Socket

Socket
Memory

MemoryMemory

Memory
MemoryMemory

Memory
MemoryMemory

Memory
MemoryMemory

Interconnect

Core Core Core Core

Memory Controller

■ Part of the main memory is directly attached to a socket (local memory)

■ Memory attached to a different socket can be accessed indirectly via the other
socket‘s memory controller and interconnect (remote memory)

■ Socket + local memory form a NUMA node

ParProg 20 B4
Non-Uniform
Memory Access

Tradeoff:
computational load balancing ◊ data locality

Thread Placement: Realized in the OS through an Affinity Mask
■ Pinning (= only a single bit set)

■ Affinity mask can be adjusted at runtime

Ø Computation follows data

Data Placement: Realized in the OS on page granularity (4k, 64k, ... 64GB)
■ Static: Placement policies apply at allocation tome

□ First-touch ∙ Allocate on fixed node(s) ∙ Interleaving

■ Dynamic: Pages can migrate at runtime

Ø Data follows computation

Felix Eberhardt

Chart 42

Non-Uniform Memory Access
Placement Decisions

ParProg 20 B4
Non-Uniform
Memory Access

high

low

utilization

low

high

Felix Eberhardt

Non-Uniform Memory Access
Topology Examples: SGI UV-300H

ParProg 2019 Non-
Uniform Memory
Access

Chart 43

How would you roll out a matrix multiplication workload on this system?
What tools / control mechanisms can you use?

C1: SIMD

Scalar vs. SIMD

A0

A1

A2

A3

B0

B1

B2

B3

+

+

+

+

C0

C1

C2

C3

=

=

=

=

A0

A1

A2

A3

+

B0

B1

B2

B3

=

C0

C1

C2

C3

4 additions

8 loads

4 stores

1 addition

2 loads

1 store

How many instructions are needed to add four numbers from memory?

scalar 4 element SIMD

Sven Köhler

ParProg20 C1
Integrated
Accelerators

Chart 45

Vector Data Realignment and Permutation (1)

Sometimes memory is not correctly ordered for a certain tasks.
Example: Squared absolute of 2D points (r2 = px

2 + py
2)

X0

X1

X2

X3

*

X0

X1

X2

X3

+

R0

R1

R2

R3

Y0

Y1

Y2

Y3

*

Y0

Y1

Y2

Y3

=

Y0 Y1 Y2 Y3X0 X1 X2 X3in registers:

X0 Y0 X1 Y1 X2 Y2 X3 Y3in memory: struct point2d[];
Sven Köhler

ParProg20 C1
Integrated
Accelerators

Chart 46

Conditional Programming (1)

There are no branches for element computation in AltiVec.

calculation 1

calculation 2

vec_sel

compute cond

calculation 1 calculation 2

cond?
true false

compute cond

Instead compute both variants and then use bit-wise select.

Sven Köhler

ParProg20 C1
Integrated
Accelerators

Chart 47

A

B

…

…

…

…

00000000111111110010101100001111

a =

b =

pattern =

res =

3. Vector Processing—AltiVec and VSX

Al
tiV

ec
/V

M
X VS

X

vr0 vsr32
vr1 vsr33
… …
vr31 vsr63

Double Word 0 Double Word 1

Word 0 Word 3 …
Half
Word 0

Half
Word 7

…

Byte 0 Byte 15 …

Quad Word 0

fpr1 vsr1
fpr0 vsr0

fpr31 vsr31
… …

Figure 3.1.: POWER8’s unified SIMD register file. It consists of 32 VMX registers and additional 32 VSX
registers, that extend general purpose floating point registers. They consist of 128-bit each and can be
interpreted as 8, 16, or 32-bit (un)signed integers, floating points, ARGB-pixel, or logical values. VSX
allows for 64-bit values. Furthermore, Power ISA 2.07 B introduced 128-bit integers in VMX.

interpreted as logical values or 16-bit ARGB pixels. A distinction is made by choosing an
instruction fitting the desired word size, where applicable.

IBM introduced with its vector-scalar floating-point extension (VSX) additional 152 instructions,
as of Power ISA 2.07 B [110, page 326]. VSX instructions can additionally interpret the same
vector registers as 64-bit values—either integer or double-precision floating point. Furthermore,
VSX rearranges the register file by extending and repurposing scalar, double-precision floating
point registers to an additional number of thirty-two 128-bit registers. The original VMX
registers are mapped behind them in terms of addressing—creating a total of 64 vector registers
available.

It is crucial to understand, that these two instruction sets have distinct instruction formats [110,
sec. 1. 6]—allowing for either only the VMX or all of the 64 VSX registers to be addressed (see
table 3.1). However, several acceleration instructions introduced can be found to comply with
the VX-instruction format (see chapter 6 for details). As a result, these instruction are limited
to the smaller VMX register file, requiring additional moves of operands and results from a
VSX-space to VMX and potentially back. Although this movement may be either solved in
microcode (see section 3.1.1) or preferably left to the compiler, it should be always considered
as lingering cost when performing microoptimizations and employing intrinsics.

12All VSX instructions construct the register index referred to by combining a 5-bit value (R-value) with another bit
(X-bit) that indicates whether the extended general purpose registers or the regular AltiVec registers should be
used.

16

Architecture-Dependent Element Count in Vector Registers

127 0

Sven Köhler

ParProg20 C1
Integrated
Accelerators

Chart 48

__m128 4 floats
__m128d 2 doubles
__m128i integers (8-128bit)
__m256 8 floats
__m256d 4 doubles
__m256i integers (8-128bit)
__m512 …

ppc64 amd64

■ Countable loops
■ Static counts (length does not change)
■ Single entry and single exit (read: no data-depended break)
■ All function calls can be in-lined, or are math intrinsics (sin, floor, …)
■ Straight-line code (no switch-statements), mask-able if/continue

Sven Köhler

ParProg20 C1
Integrated
Accelerators

Chart 49

What loops can be vectorized

for (int i=0; i<length; i++) {
float s = b[i]*b[i] - 4*a[i]*c[i];
if (s >= 0) {

s = sqrt(s) ;
x2[i] = (-b[i]+s)/(2.*a[i]);
x1[i] = (-b[i]-s)/(2.*a[i]);

} else {
x2[i] = 0.;
x1[i] = 0.;

}
}

C2: GPUs

>25% of HPC systems
in the Top500 (Nov ’18)
are powered by GPUs

Max Plauth

ParProg20 C2
GPUs

Chart 51

Why GPUs?

[https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/, https://www.top500.org/statistics/list/]

AVX2

AVX-512
AVX

Max Plauth

ParProg20 C2
GPUs

Chart 52

GPU Hardware: Discrete vs. Integrated GPUs

137GB/s
(Jetson AGX)

CPU
GPU

~1.5TB/s

(NVIDIA A100)
~410GB/s

(AMD Zen 2)

~32GB/s

(PCIe 4)

CPU

Max Plauth

ParProg20 C2
GPUs

Chart 53

Hardware: NVIDIA GA100 Full GPU with 128 SMs

■ „a routine compiled for high throughput accelerators“ (Wikipedia)

■ An instance of a kernel function is executed once per thread

■ Indices determine what portion of work is performed by a kernel

instance

■ Think of kernels as the body of an inner loop

Max Plauth

ParProg20 C2
GPUs

Chart 54

CUDA Programming Model: Kernels

void
serial_mul(const float* a,

const float* b,
float* c,
int n)

{

for(int i = 0; i<n; i++)

c[i] = a[i] * b[i];

}

__global__ void
mul(__global__ const float* a,

__global__ const float* b,
__global__ float* c)

{

int id = threadIdx.x +
blockIdx.x * blockDim.x;

c[id] = a[id] * b[id];

}

■ Register File
□ Private to each thread
□ Fastest memory, several variables

■ Shared Memory
□ Shared per block
□ Fast memory, several kilobytes
□ Managed manually

■ Global Memory
□ Shared per process
□ Slowest memory, several gigabytes

Max Plauth

ParProg20 C2
GPUs

Chart 55

CUDA Programming Model: Memory Hierarchy

Max Plauth

ParProg20 C2
GPUs

Chart 56

Best Practices for Performance Tuning

• Asynchronous, Recompute, SimpleAlgorithm Design

• Chaining, Overlap Transfer & ComputeMemory Transfer

• Avoid Divergent BranchingControl Flow

• Local Memory as Cache, rare resourceMemory Types

• Coalescing, Bank ConflictsMemory Access

• Work-Group Size, Work / Work-ItemSizing

• Shifting, Fused Multiply, Vector TypesInstructions

• Native Math Functions, Build OptionsPrecision

C3: FPGA

Lukas Wenzel

ParProg 2020 C3
FPGA Accelerators

Chart 58

Introduction
Mapping Workloads to Hardware

LD R0, #0
loop:
LD R1, [f + R0]
SUB R2, #1, R1
LD R3, [a + R0]
LD R4, [b + R0]
MUL R5, R3, R1
MUL R6, R4, R2
ADD R5, R5, R6
ST [r + R0], R5
ADD R0, R0, #1
BLT R0, #N, loop

Memory

Execute

Register

General Purpose Hardware Custom Hardware

+
× ×

−== =
+ ×−

Example:
Given Arrays a, b, and f calculate r[i] = a[i] × f[i] + b[i] × (1 - f[i])

Lukas Wenzel

ParProg 2020 C3
FPGA Accelerators

Chart 59

FPGA Characteristics
Hardware Structure

FPGA fabric is a regular structure of hardware
primitives and an interconnect for signal lines
■ Interconnect can be configured to connect

signals lines between primitives
■ Primitives can be configured to select variations

of their basic behavior

■ Combinatorial paths begin and
end at flipflops

■ Clock period must be longer that
the maximum path delay

Maximum delay:
𝐦𝐚𝐱{𝒕𝜹} = 𝟕𝐧𝐬

Clock frequency:

𝒇 ≤
𝟏

𝐦𝐚𝐱 𝒕𝜹
= 𝟏𝟒𝟑𝐌𝐇𝐳

Lukas Wenzel

ParProg 2020 C3
FPGA Accelerators

Chart 60

FPGA Characteristics
Performance

FF

in0

FF

in1

FF

acc0

FF

acc1

LUT3

000|0
001|0
010|0
011|1
100|0
101|1
110|1
111|1

LUT2

00|0
01|1
10|1
11|0

LUT2

00|0
01|0
10|0
11|1

CLBCLB

0ns

0ns

0ns

0ns

2ns
3ns

3ns
2ns

5ns

2ns

3ns

+1ns

+1ns

+1ns

4ns

4ns

+3ns

+1ns+2ns

+2ns

+3ns

+1ns

+1ns

5ns

6ns 7ns

Maximum clock frequency is design specific!

Any program can be transformed into an equivalent hardware design:
■ Variables and operations are realized in the datapath
■ Control flow is realized through a finite state machine (FSM) controlling the

datapath

Lukas Wenzel

ParProg 2020 C3
FPGA Accelerators

Chart 61

FPGA Design
Basic Patterns

int proc(int a, int b, int f)
{

int f_inv = 1 - f;
a *= f;
b *= f_inv;
return a + b;

}

+

×

−

rA

rB

rF

rI
1

a

b

f

ret

S0 S1𝐫𝐀 ← 𝐚
𝐫𝐁 ← 𝐛
𝐫𝐅 ← 𝐟

S2𝐫𝐀 ← 𝐫𝐀×𝐫𝐅
𝐫𝐈 ← 𝟏− 𝐫𝐅

𝐫𝐁 ← 𝐫𝐁×𝐫𝐈 𝐫𝐞𝐭 ← 𝐫𝐀+ 𝐫𝐁S3

Control Signals Status Signals

■ Dataflow is a computational model based on streams of data units, that are
processed by traversing a network of operators
Ø Enables a flexible kind of task parallelism, where operations are not

orchestrated by control flow but availability of data operands

Lukas Wenzel

ParProg 2020 C3
FPGA Accelerators

Chart 62

FPGA Design
Dataflow Model

Input A

Input F

Input B

+ Output R

×

−
×1

Data Flow

int proc(int a, int b, int f)
{

int f_inv = 1 - f;
a *= f;
b *= f_inv;
return a + b;

}

Control Flow

Ø Workloads with an efficient dataflow representation usually yield an
efficient hardware implementation!

Lukas Wenzel

ParProg 2020 C3
FPGA Accelerators

Chart 63

FPGA Development
Workflow

High-level design methods extend the frontend of traditional workflows.
They usually produce HDL descriptions as intermediate artifacts.

FPGA accelerator cards provide a host system interface as well as local memory
and IO resources.

■ DRAM modules to complement the limited BRAM capacity on the FPGA

■ Flash Storage
■ Network Interfaces

■ Video and Peripheral Ports

■ Auxilliary Accelerators like Crypto Units or A/V Codecs

…

Lukas Wenzel

ParProg 2020 C3
FPGA Accelerators

Chart 64

FPGA Accelerators

■ Channels consist of: Payload ● Valid handshake ● Ready handshake

■ Advanced Extensible Interface Stream (AXI Stream) ~ sequential access

■ Advanced Extensible Interface (AXI) ~ random access

Lukas Wenzel

ParProg 2020 C3
FPGA Accelerators

Chart 65

Excursion
AMBA Protocol Family

Source Destination
payload

valid
ready

Write

Master Slave

AR Channel

AW Channel

W Channel

R Channel

B Channel

Read SNAP Core

User Design hmem

ctrl

lmemnvme...

D1: Shared Nothing Basics

Lukas Wenzel

ParProg 2020 D1
Shared-Nothing
Basics

Chart 67

Parallel Random Access Machine (PRAM)

Natural extension of the Random Access Machine (RAM) model:

Memory

Processor

Instruction
Instruction
Instruction
Instruction

›

Instruction

Processor

Instruction
Instruction
Instruction
Instruction

›

Instruction

Processor

Instruction
Instruction
Instruction
Instruction

›

Instruction

Lockstep

■ Arbitrary amount of memory

■ Constant memory access latency

■ Arbitrary number of processors

■ Lockstep execution

Exclusive Read,
Exclusive Write

EREW

Concurrent Read,
Exclusive Write

CREW

Exclusive Read,
Concurrent Write

ERCW

Concurrent Read,
Concurrent Write

CRCW

Multiple processors can read the same address

Multiple
processors

can write the
same address

Arbitration Policies:

§ Common
§ Arbitrary

§ Priority

§ Aggregate (Sum, Max,
Avg, ...)

Lukas Wenzel

ParProg 2020 D1
Shared-Nothing
Basics

Chart 68

[Valiant1990]
Bulk Synchronous Parallel Model (BSP)

Algorithms are divided into three repeating
phases, forming multiple supersteps:
1. Local Computation
2. Global Communication
3. Synchronization

Superstep duration varies at runtime depending
on computational and communication load.

›

››

›

𝒈 ⋅ 𝒎𝒔𝒈𝟎𝟏

𝒍

𝒈 ⋅ 𝒎𝒔𝒈𝟎𝟐

𝒘𝟎

Performance estimates using the following parameters:

Computation time: 𝒕𝑾 = 𝐦𝐚𝐱{𝒘𝒊}

Communication time: 𝒕𝑪 = 𝒈 ⋅ 𝒎 ⋅ 𝒉
𝒈 ~ message bandwidth
𝒎 = 𝐦𝐚𝐱 𝒎𝒔𝒈𝒌 ~ message size
𝒉 = 𝐦𝐚𝐱 #𝒊𝒏𝒊 , #𝒐𝒖𝒕𝒊 ~ communication pattern

Synchronization overhead: 𝒕𝑺 = 𝒍

Lukas Wenzel

ParProg 2020 D1
Shared-Nothing
Basics

Chart 69

[Culler1993]
LogP Model

LogP enables a fine-grained analysis of
communication patterns.

Parameters:
𝑷 − #processors
𝒈 − gap (time in cycles between messages

from / to a single processor)
𝒐 − overhead (time in cycles for send /

receive operation)
𝒍 − latency (time in cycles between

transmission and reception of a
message)

Example: Request-Response sequence
between two processors
■ 𝑷 = 𝟐 ; 𝒍 = 𝟑 ; 𝒈 = 𝟒 ; 𝒐 = 𝟐 ; 𝒕𝒓𝒆𝒔𝒑 = 𝟑

■ 𝒕𝒕𝒐𝒕𝒂𝒍 = 𝟐 ⋅ 𝒍 + 𝟒 ⋅ 𝒐 + 𝒕𝒓𝒆𝒔𝒑 = 𝟏𝟕

›

››

›

18 19 200 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

g
P0 o

go
P1 go𝒕𝒓𝒆𝒔𝒑

go

𝒍 𝒍

Lukas Wenzel

ParProg 2020 D1
Shared-Nothing
Basics

Chart 70

Network Topologies

Topologies are characterized by multiple metrics:

■ Diameter ~ Latency
Maximum distance between any two nodes

■ Connectivity ~ Resilience
Minimum number of removed edges to cause partition

■ Bisection Bandwidth ~ Throughput
Transfer capacity across balanced network cuts

■ Cost ~ Network complexity
Total number of edges

■ Degree ~ Node complexity
Maximum number of edges per node

■ Link Bandwidth

Lukas Wenzel

ParProg 2020 D1
Shared-Nothing
Basics

Chart 71

Network Topologies

Fully Connected

Diameter 𝟏

Connectivity 𝒏 − 𝟏

Cost 𝒏𝟐 − 𝒏
𝟐

Degree 𝒏 − 𝟏

Ring

Diameter
𝒏
𝟐

Connectivity 𝟐

Cost 𝒏

Degree 𝟐

Star

Diameter 𝟐

Connectivity 𝟏
(single node)

Cost 𝒏

Degree 𝟏 | 𝒏 (!)

Lukas Wenzel

ParProg 2020 D1
Shared-Nothing
Basics

Chart 72

Network Topologies

d-Mesh

Diameter 𝒅 ⋅ 𝒌 − 𝟏
= 𝒅 ⋅ (𝒅 𝒏 − 𝟏)

Connectivity 𝒅

Cost
𝒅 ⋅ 𝒌𝒅C𝟏 ⋅ 𝒌 − 𝟏
= 𝒅 ⋅ (𝒏 − 𝒏 D𝒅C𝟏

𝒅)

Degree 𝟐 ⋅ 𝒅

𝐝 = 𝟐
𝐤 = 𝟑
𝐧 = 𝐤𝐝 = 𝟗

d-Torus

Diameter
?𝒅 ⋅ (𝒌 − 𝟏)
𝟐

= ?𝒅 ⋅ (𝒅 𝒏 − 𝟏)
𝟐

Connectivity 𝟐 ⋅ 𝒅

Cost 𝒅 ⋅ 𝒌𝒅 = 𝒅 ⋅ 𝒏

Degree 𝟐 ⋅ 𝒅

𝐝 = 𝟐
𝐤 = 𝟑
𝐧 = 𝐤𝐝 = 𝟗

d-Hypercube

= d-Mesh with k = 2

Lukas Wenzel

ParProg 2020 D1
Shared-Nothing
Basics

Chart 73

Network Topologies

Fat Tree of Depth 𝒍
= Binary 𝒍-level switch hierarchy,

where uplink bandwidth equals sum of downlink bandwidths

Fat Tree

Diameter 𝟐 ⋅ 𝒍 = 𝟐 ⋅ 𝒍𝒐𝒈𝟐(𝒏)

Connectivity 𝟏

Cost 𝟐𝒍E𝟏 − 𝟐 = 𝟐 ⋅ 𝒏 − 𝟐

Cost
(Bandwidth adjusted)

𝒍 ⋅ 𝟐𝒍 = 𝒏 ⋅ 𝒍𝒐𝒈𝟐(𝒏)

Degree 𝟏 | 𝟑
𝒍 = 𝟑
𝒏 = 𝟐𝒍 = 𝟖

D2: MPI

Single Program Multiple Data (SPMD)

Sven Köhler

ParProg20 D2 MPI

Chart 75

Single Program Multiple Data (SPMD)

P0 P1 P2 P3

seq. program and
data distribution

seq. node program
with message passing

identical copies with
different process

identifications

Interconnect

MPI Communication Terminology

Sven Köhler

ParProg20 D2 MPI

Chart 76

Host A Host B Host C Host D

Process 0 Process 1 Process 2 Process 4

Process 3

rank

node

communicator

Communicator: handle for group of processes (MPI_COMM_WORLD = all)
Size: Number of processes in a communicator

(within communicator)

Circular Left Shift Example

Sven Köhler

ParProg20 D2 MPI

Chart 77

Shifts: Shift the array
for (i=0;i<shifts;i++){
 if (myid==0){
 MPI_Send(&values[0], 1, MPI_INT, lnbr, 10,
 MPI_COMM_WORLD);
 for (j=1;j<100/np;j++){
 values[j-1]=values[j];
 }
 MPI_Recv(&values[100/np-1], 1, MPI_INT, rnbr,
 10, MPI_COMM_WORLD, &status);
 }else{
 int buf=values[0];
 for (j=1;j<100/np;j++){
 values[j-1]=values[j];
 }
 MPI_Recv(&values[100/np-1], 1, MPI_INT, rnbr,
 10, MPI_COMM_WORLD, &status);
 MPI_Send(&buf, 1, MPI_INT, lnbr, 10,
 MPI_COMM_WORLD);
 }
}

Circular Left Shift Application

shifts <number of positions>

Description
• Position 0 of an array with 100 entries is initialized to 1.

The array is distributed among all processes in a
blockwise fashion.

• A number of circular left shift operations is executed.

• The number is specified via a command line parameter.

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

Send and Receive Protocols

Sven Köhler

ParProg20 D2 MPI

Chart 78

Send call returns
after data has
been buffered

MPI_BSend

Send call returns
after initiating
DMA transfer
to the buffer

MPI_IBSend

Send call returns
after matching

receive is
Available

MPI_SSend

No semantics
promised.

MPI_ISSend

Blocking Non-Blocking

Buffered

Non-Buffered

MPI Collective Operations

Sven Köhler

ParProg20 D2 MPI

Chart 79

D3: Actors

Actors

ParProg20 D3
Actors
Sven Köhler

Chart 81

Actor 1

Actor 2

Actor 0

Actor 3

Actor 4

„Everything is an actor“

Erlang Cluster Terminology

Sven Köhler

ParProg20 D3
Actors

Chart 82

An Erlang cluster consists of multiple interconnected nodes, each running
several light-weight processes (actors).
Message passing implemented by shared memory (same node), TCP (ERTS), …

nodeA

PA.1

PA.2

PA.0

PA.4

PA.5

nodeB

PB.0

PB.1

Host 1

nodeC

Host 2

nodeD

Host 3

■ Each concurrent activity is called process, started from a function
■ Local state is call-stack and local variables
■ Only interaction through asynchronous message passing
■ Processes are reachable via unforgable name (pid)
■ Design philosophy is to spawn a worker process for each new event

□ spawn([node,]module, function, argumentlist)

□ Spawn always succeeds, created process may terminate
with a runtime error later (abnormally)

□ Supervisor process can be notified on fails

Concurrency in Erlang

Sven Köhler

ParProg20 D3
Actors

Chart 83

Armstrong, Joe. "Concurrency oriented programming in Erlang." Invited talk, FFG (2003).

super-
visor

super-
visor

super-
visor

worker worker worker

ParProg20 E2
Summary

Chart 84

Enjoy whatever helps you learning.
Much success for the exam!

Parallel Programming and Heterogeneous Computing
E2 - Summary

Max Plauth, Sven Köhler, Felix Eberhardt, Lukas Wenzel and Andreas Polze
Operating Systems and Middleware Group

